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 Over the past few decades, there have been numerous turning points in the 

massive transformation of computing systems. The limits of instruction-level 

parallelism (ILP) and the end of Dennard's scaling pushed the semiconductor 

sector toward multi-core devices, notwithstanding Moore's law, which 

directed the industry to pack more and more transistors and logic into the 

exact same volume. The era of domain-specific architectures (DSA) and 

processors for novel workloads like machine learning (ML) and artificial 

intelligence (AI) has recently begun. In addition to the difficulties brought on 

by tighter integration, extreme form factors, and increasingly varied 

workloads, these trends—possibly with additional limitations—further 

complicate the architecture, design, implementation, and power consumption 

optimization of systems. Nowadays, across the board, energy efficiency is a 

first-order design constraint and parameter for computing equipment. The 

creation of energy-efficient computer systems using RISC-V architecture 

modifications specifically suited for machine learning inference is 

investigated in this study. While preserving inference speed and accuracy, 

the suggested extensions seek to decrease energy consumption, minimize 

instruction overhead, and maximize hardware utilization. Through the 

integration of domain-specific accelerators, memory-access optimizations, 

and lightweight vector operations, the extended RISC-V platform exhibits 

notable gains in performance per watt when compared to traditional 

architectures. Results from experiments and benchmark assessments 

demonstrate how well-suited the method is for real-time Internet of Things 

applications including industrial automation, smart healthcare, and 

environmental monitoring. AI-enabled IoT systems that are low-power, 

scalable, and sustainable are being advanced by this work. 
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1. INTRODUCTION 

In recent years, we have contributed to the exponential expansion of Internet-of-things (IoT) 

connected devices that are present in a variety of application areas, including surveillance of structural health, 

agricultural, and health tracking [1]. In this situation, the Internet of Things end-nodes must use signal 

processing techniques to gather data from low-power sensors and transmit it wirelessly over the network. In 

addition to giving IoT nodes intelligent capabilities and expanding IoT applications with DL-enhanced tasks 

(like self-governing nanodrones), machine learning (ML) algorithms, particularly cutting-edge Deep 

Learning (DL), offer "information distillation" solutions that allow for the extraction of useful information 

from the raw data collected by sensors. They can wirelessly transmit a small amount of condensed 

information by "squeezing" raw data into a much more grammatically dense format [2] (e.g., determining 

classes, feature levels, and characters). 

This reduces traffic on the Internet of Things network and lessens reliability and security issues, 

which are now made worse by the large increase in raw data flowing through the network. With the aim of 

implementing DL capability at the very edge of the IoT, a broad study area has been drawn to the obvious 
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advantages of embedding knowledge on IoT nodes. This endeavor must contend with the high memory and 

computational demands of popular deep learning techniques, which conflict with the typically limited 

memory and computing capabilities of deeply embedded equipment that are fueled by harvesting power or 

battery packs. 

 

 

Figure 1. An example of an architecture for edge computing 

The energy conservation system's block diagram shows how the hardware and software components 

are arranged methodically to allow for energy-efficient machine learning inference on RISC-V based 

architectures at the edge of the Internet of Things. In order to guarantee optimal performance per watt and 

accuracy in inference tasks, the system is primarily built to track energy use, optimize computational tasks, 

and dynamically distribute resources in Figure 1. The input data sources, which usually comprise sensor data, 

image/video streams, or biological signals recorded by Internet of Things devices, are shown first in the 

diagram. These inputs serve as the system's cornerstone since they are the unprocessed data that needs to be 

processed using machine learning models. The data goes through a feature extraction and preprocessing unit 

after the input step. This block is in charge of filtering noise, lowering the dimensionality of the incoming 

data, and carrying out quick calculations that get the data ready for more in-depth analysis. By avoiding 

heavy or unnecessary computations, preprocessing at the edge reduces the stress on the phases that follow, 

saving energy. Preprocessing, for instance, might entail filtering heart-rate signals in a medical wearable 

device before sending them to the primary inference engine. 

The RISC-V core combined with Deep Learning Accelerator (DLA) extensions is the next essential 

part. This block serves as the energy conservation system's computational foundation. Because of its open-

source flexibility and adaptability, the RISC-V instruction set architecture (ISA) enables the addition of 

specific extensions that are tailored for deep learning applications. Lightweight vector instructions, multiply-

accumulate (MAC) units, and domain-specific accelerators for matrix operations—all crucial components of 

convolutional and recurrent neural networks—are frequently included in these additions. The DLA 
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significantly lowers energy consumption and increases throughput by ensuring that most energy-intensive 

calculations are transferred from the general-purpose processor to specialized hardware. 

The energy monitoring and power management block is connected to the computational core. In 

order to balance performance and energy efficiency, this subsystem dynamically adjusts the frequency, 

voltage, and resource allocation while continuously monitoring the system's power consumption. To reduce 

idle power dissipation, strategies including clock gating, power gating, and Dynamic Voltage and Frequency 

Scaling (DVFS) are used. For example, the system lowers operational frequency and turns off unused 

modules when the workload is light or sporadic, resulting in substantial savings in energy without sacrificing 

real-time performance. The memory subsystem, which consists of external memory units and on-chip cache, 

is another crucial piece in the diagram. The energy conservation system minimizes energy-hungry data 

transfers by introducing optimizations like data reuse buffers, compression algorithms, and memory-access 

scheduling, as memory access is frequently a bottleneck in machine learning workloads. The system makes 

sure that the amount of energy used for memory operations is maintained to a minimum by employing clever 

caching techniques and putting frequently accessed data closer to the CPU. 

In IoT edge scenarios where devices need to communicate with cloud servers or other edge devices, 

the communication interface block is essential. Here, energy efficiency is attained by the use of edge-level 

decision-making to cut down on needless communication overhead, data compression before to transmission, 

and lightweight communication protocols. For example, the system uses the DLA to analyze data locally and 

only sends the pertinent inference findings, saving bandwidth and energy, rather than transmitting raw video 

feeds to the cloud. The application layer and output stage, the last block in the design, is where the user or 

higher-level decision-making systems get the outcomes of machine learning inference. These applications 

span a variety of industries, including environmental monitoring, smart cities, healthcare, and industrial 

automation. When anomalous activity is detected, for instance, the output of a smart surveillance program 

might be an alert; in agriculture, it might be a recommendation for irrigation based on the analysis of sensor 

data. Crucially, by guaranteeing that energy-efficient computation results in useful, real-world consequences, 

the application layer completes the energy conservation system's cycle. 

Overall, the block diagram shows a well-integrated system with energy-saving contributions from 

every module. Input data capture, preprocessing, RISC-V DLA computation, power management, memory 

optimization, communication efficiency, and, at the end, application-specific outputs provide a 

comprehensive approach to sustainable computing platform design [3]. The system maintains scalability and 

low power consumption while adapting to a variety of IoT use cases by utilizing RISC-V's extensibility. 

This block diagram's importance arises from both its modular design and its capacity to emphasize 

the interdependencies among various subsystems. Preprocessing improvements, for example, immediately 

lower computational energy, whilst power management unit improvements increase device lifetime. Memory 

optimizations also lower communication costs by lowering data transmission overhead. This interdependence 

demonstrates that energy conservation is the outcome of cooperative optimization throughout the entire 

architecture rather than the responsibility of a single block. 

 

2. RELATED WORKS  

The constraints of the conventional von Neumann architecture, which uses distinct hardware for 

memory and computation, are revealed by the "memory wall" problem in computer architecture. In memory-

intensive applications like artificial intelligence, the memory bus bandwidth limits system performance due 

to the division between the compute blocks used for logic processing and the memory blocks used for data 

and program storage. There have been a number of earlier suggestions in the literature to lessen or eliminate 

the memory wall by bringing the memory and calculation units closer together [4]. The IRAM design 

suggested using the DRAM main memory chip to fabricate a compute logic processor. However, because of 

the constraints of fabrication technology at the time, this early concept for the PiM model was not widely 

embraced. AI Processing Units (APU) has been implemented in the base logical die of a 3D layered main 

memory in numerous earlier works.  
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The most fundamental and ultimate need in an energy-saving system is the integration of 

microcontrollers with various components, including sensors, relays [5], and business appliances like fans, 

lights, etc. Devices, users, and the system can be linked in a variety of ways, depending on the system, range, 

corporate office size, and user convenience. The appliances must all interface with the system if a user wants 

to control every corporate appliance via it. Only those appliances that the user wishes to control must 

interface with the system; all other devices can be operated manually. The fundamental idea behind this 

project is to automatically turn on and off business gadgets like fans and lights. In this case, the relay acts as 

a switch by transmitting data between the appliances and the microcontroller. A microcontroller is coupled to 

a PIR sensor and a proximity sensor. The microcontroller is also connected to control devices. Human 

detection provides information to the microcontroller.  

RISC-V has served as the foundation for a number of open-source projects that have tried to close 

this gap. With an emphasis on energy-efficient near-sensor processing, PULPino created an ultra-low-power 

microcontroller platform. GAP8 [6] expanded this architecture by adding an 8-core cluster that was tuned for 

parallel DSP and CNN workloads. Although these architectures demonstrated RISC-V's potential in edge-

constrained contexts, their efficacy on control-intensive or serial algorithms was limited due to their heavy 

reliance on parallelism and compiler-assisted task decomposition. Furthermore, they lacked dedicated 

memory co-optimization and flexible SIMD execution engines, both of which are essential for maximizing 

the use of contemporary quantized deep learning algorithms. 

Over time, there has been a notable increase in the demand for low-cost and low-power accelerators. 

In particular, RISC-V-based ISA designs have aided in the global emergence of open-source hardware 

solutions during the global disruption of the semiconductor supply chain brought on by the COVID-19 

pandemic and further intensified by Russia's invasion of that country in early 2022 [7].  In order to remain as 

inclusive as possible, we have also had difficulties keeping up with the quick rise in the number of open-

source hardware designs that are produced. It was also challenging to gather specifications and more detailed 

information about commercially available CPU cores and SoCs because some of them were only accessible 

with a private license. 

There are more benefits to integrating BNN inference into a RISC-V core than just domain-specific 

hardware acceleration. An FPGA-deployed RISC-V processor may perform BNN inference while 

concurrently managing other instructions, obviating the need for an additional processing unit, in contrast to 

conventional FPGA-based deep learning accelerator that only use specialized processing units [8]. It has been 

demonstrated that this hybrid capacity improves real-time AI systems, especially in situations when deep 

learning inference and dynamic task execution are required. 

 

3. METHODS AND MATERIALS 

3.1 RISC-V VP Based on System C 

A potential RISC-based processor design, RISC-V is an open ISS (Instruction Set Structure) that 

was developed at U.C. Berkeley and is kept up to date by the open foundations. Processor chips based on 

RISC-V Core IP are already on the market, and RISC-V Core has already been produced and published as 

Core IP [9]. Nonetheless, RISC-V is commonly employed in research based on FGPA or RTL because it is 

still in its infancy. The FPGA or RTL level design has also been used in the research and development stages 

of the RISC-V-based CNN Architecture; however, this method has the drawback of requiring a 

comparatively long period for system verification, analysis, and optimization. 

System C is the foundation for the recently established RISC-V Virtual Platform, which is effective 

for system testing in a comparatively short amount of time. The Virtual Platform is a highly adaptable and 

extendable system that may include other TLM-connected module for checking unique functions in the 

RISC-V VP context. It was developed and tested with a modular bus system using TLM 2.0 for the RISC-V 

RV32IM core [10]. The bus delivers the initiator's activity to the destination port by routing it according to 

the memory-mapped address. The CPU may also manage foreign or local interruptions. The PLIC-based IC 

(Interrupt Controller) handles the external interrupt, while the CLINT (Core Local Interrupt Controllers) 
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handles the local interrupt. Software that has been compiled using the RISC-V cross-compiler can run on this 

virtual platform. After being cross-compiled, the SW is produced as an executable file in the ELF format, 

which is then put into the main memory and run as firmware [11]. The primary memories module serves as 

the software's memory region and is additionally linked to the bus. 

By incorporating the CNN DLA modules into the virtual platform, we created a DLA prototype 

system built on the RISC-V VP platform. The CNN DLA module is assigned to a portion of the RISC-V 

CPU core's address range and is linked to the TLM 2.0 Bus via the target port [12], as seen in Figure 2. The 

internal module that carries out CNN functions including convolution, initialization, and pools through 

read/write over the TLM bus makes up the CNN DLA module. After being loaded into main memory, the 

DNN data is moved to the DLA module via DMA techniques. 

 

 

Figure 2. Overview of the RISC-V Virtual Platform Architecture 

Registers assigned to the CNN addressing range are written to and read from by the CPU core, 

which manages the CNN module. Through the execution of DNN applications like Darknet, a virtual 

platform that includes CNN DLA can carry out deep learning interpretation. The DNN applications are 

loaded into primary memory as executable files in the ELF format after being compiled by a RISC-V cross 

processor. 

3.2 Applications of the RISC-V DLA System 

The RISC-V Deep Learning Accelerator (DLA) system has emerged as a promising architecture for 

deploying machine learning inference in energy-constrained environments. By combining the open-source 

flexibility of RISC-V with hardware acceleration for deep learning tasks, the DLA system enables efficient 

and scalable deployment of AI at the edge. Its adaptability and low-power design make it suitable for a broad 
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spectrum of applications, ranging from healthcare and robotics to industrial automation [13], smart cities, and 

consumer electronics. 

One of the most impactful applications of the RISC-V DLA system is in healthcare and medical 

technologies. The demand for continuous patient monitoring and real-time diagnostic assistance has driven 

the adoption of wearable and portable devices that integrate machine learning at the edge. With RISC-V 

DLA, biomedical signals such as electrocardiograms (ECG), electroencephalograms (EEG), and blood 

glucose levels can be processed directly on wearable devices, minimizing reliance on cloud servers. This not 

only reduces latency but also preserves patient privacy, as sensitive data remains local to the device. 

Moreover, imaging applications such as ultrasound and X-ray interpretation can be enhanced through deep 

learning inference on edge-based diagnostic machines, making advanced healthcare accessible even in 

remote or resource-limited settings. Such capabilities align well with the broader goal of personalized and 

preventive medicine, where rapid decision-making is critical. 

Another major application domain is autonomous systems and robotics, where real-time data 

processing and decision-making are essential. Autonomous vehicles, drones, and service robots rely heavily 

on deep learning models for tasks such as object detection, obstacle avoidance, and path planning. The RISC-

V DLA system provides a platform capable of executing these computations with high efficiency while 

keeping energy consumption to a minimum, thereby extending operational time for battery-powered systems. 

For example, drones equipped with a RISC-V DLA can perform aerial surveillance, package delivery, or 

agricultural monitoring without requiring frequent recharging. Similarly, industrial robots deployed on 

factory floors can use the accelerator to interpret sensory inputs in real time, enabling safe human-robot 

collaboration and enhancing productivity in smart manufacturing. 

The deployment of RISC-V DLA in smart cities and surveillance systems highlights its role in 

large-scale societal applications. Video surveillance cameras embedded with deep learning accelerators can 

perform local inference for facial recognition, anomaly detection, and crowd monitoring, reducing the need 

to transmit vast amounts of raw data to centralized servers. This approach not only decreases communication 

bandwidth requirements but also strengthens data privacy and security. Additionally, smart traffic systems 

can leverage edge-based analytics powered by the RISC-V DLA to dynamically control traffic lights, 

monitor congestion, and enhance pedestrian safety. Environmental monitoring in urban areas, such as 

analyzing air quality and noise levels through distributed IoT nodes, further illustrates the potential of 

energy-efficient deep learning inference for sustainable city management. 

In the context of Industrial IoT (IIoT), the RISC-V DLA system enables predictive maintenance and 

process optimization. By embedding machine learning inference capabilities directly into industrial 

machines, the system allows continuous monitoring of vibrations, temperature, and pressure to detect early 

signs of equipment failure. This predictive maintenance reduces downtime and minimizes operational costs. 

Furthermore, edge-based inference reduces reliance on cloud connectivity, ensuring that time-sensitive 

operations can proceed without delays. The flexibility of the RISC-V instruction set architecture allows 

domain-specific customization, enabling accelerators to be optimized for particular industrial workloads. In 

smart grids and energy distribution systems, DLA-enabled devices can balance power consumption, detect 

anomalies, and ensure reliable energy supply in real time. 

Consumer electronics and wearable devices represent another rapidly expanding application area for 

the RISC-V DLA system. Modern devices such as smartphones, augmented/virtual reality (AR/VR) headsets, 

and smart-watches increasingly depend on deep learning models for enhanced user experiences. The DLA 

system allows these devices to run applications such as natural language processing (NLP) for voice 

assistants, gesture recognition for intuitive control, and real-time image classification for AR/VR 

interactions, all while conserving battery life. Wearable’s benefit particularly from the system’s low power 

consumption, enabling continuous monitoring of user activity, sleep cycles, and fitness levels with AI-driven 

insights delivered directly on-device. 

Beyond consumer-focused domains, environmental monitoring and agriculture provide additional 

contexts where the RISC-V DLA system has transformative potential. In precision agriculture, cameras and 

sensors equipped with DLA accelerators can identify plant diseases, monitor crop growth, and optimize 
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irrigation patterns in real time, thereby improving yield and reducing resource usage. In environmental 

applications, distributed IoT sensor networks can track wildlife populations, detect forest fires, and predict 

weather anomalies with edge-based machine learning models. These applications benefit from the energy 

efficiency of the DLA system, which enables long-term operation in remote or resource-limited environments 

powered by renewable sources such as solar energy. 

Finally, the defense and aerospace sectors are also potential beneficiaries of RISC-V DLA 

integration. In defense, deep learning accelerators can support target recognition, surveillance, and situational 

awareness, all of which demand real-time inference under strict power and resource constraints. In aerospace, 

satellites equipped with DLA-enabled processors can process high-resolution images and scientific data on-

board, reducing the need to transmit large datasets to ground stations and thus improving efficiency and 

responsiveness. 

Taken together, these applications demonstrate the versatility and scalability of the RISC-V DLA 

system in addressing the challenges of modern AI workloads. By providing an open, customizable, and 

energy-efficient platform, the system supports innovation across critical domains, from healthcare and 

industry to consumer electronics and environmental sustainability. Its capacity to deliver real-time deep 

learning inference at the edge positions it as a cornerstone for the future of intelligent, connected, and energy-

aware computing systems. 

3.3 The energy conservation system 

Microcontroller 1 is linked to a PIR sensor, a proximity sensor, and loads via a relay, a power 

supply, and an LCD display in Figure 3 [14]. The PIR and proximity sensors determine whether or not there 

is anyone moving in a certain region. The microcontroller then receives this data. 

            

Figure 3. The energy conservation system's block diagram 

The energy conservation system is a structured framework designed to minimize power 

consumption while maintaining acceptable levels of computational performance in modern computing 

platforms. Within the context of IoT and edge computing, where devices are often resource-constrained and 

battery-powered, energy conservation becomes a critical design objective. The system integrates a 

combination of hardware-level optimizations, software strategies, and architectural extensions, with the goal 
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of achieving higher performance-per-watt in executing machine learning workloads. At its core, the system 

ensures that energy resources are utilized efficiently, unnecessary computations are eliminated, and power-

hungry operations are replaced with optimized alternatives. 

The system starts with energy monitoring and control systems that continuously measure how much 

electricity is used by different modules. These monitoring units provide feedback to the central controller, 

enabling dynamic adjustments such as lowering clock frequencies, scaling voltages, or shutting down 

inactive components. Techniques such as Dynamic Voltage and Frequency Scaling (DVFS) and clock gating 

are fundamental here, as they allow the processor and accelerators to adapt energy usage to the computational 

demand in real time. This ensures that no excess energy is consumed when workloads are light or 

intermittent, thereby extending device lifetime. The RISC-V processor with specific enhancements for deep 

learning inference is a vital component of the energy-saving system. Unlike general-purpose processors, 

which consume high power for repetitive matrix and tensor operations, the RISC-V architecture can be 

extended with domain-specific instructions and accelerators tailored for machine learning tasks. By 

introducing lightweight vector instructions, multiply-accumulate (MAC) units [15], and custom accelerators 

for convolutional operations, the system is able to execute inference workloads with significantly reduced 

energy overhead. Offloading these operations from the general-purpose core to specialized hardware blocks 

further improves efficiency, enabling edge devices to perform real-time analytics without draining power 

reserves. 

Another essential component of energy conservation is the memory subsystem. One of the most 

energy-intensive processes in computer systems is the transmission of data between the processor and 

memory. To mitigate this, the energy conservation system incorporates strategies such as data reuse buffers, 

intelligent caching, and compression techniques. These reduce the number of expensive memory accesses by 

reusing locally stored data whenever possible. By minimizing redundant data movement, the system ensures 

that energy is conserved while maintaining high throughput. 

Communication efficiency is another dimension of the energy conservation system, particularly 

relevant in IoT scenarios. It takes a lot of energy and bandwidth to send raw sensor data or video feeds to 

cloud servers. This is addressed by the system's emphasis on edge-level inference, in which only crucial 

results are sent after local preprocessing and analysis of the data.This not only reduces the volume of data 

transmitted but also ensures faster response times while conserving energy. Lightweight communication 

protocols, adaptive transmission scheduling, and selective reporting further contribute to efficient energy 

utilization. 

From an application perspective, the energy conservation system demonstrates its importance across 

multiple domains. In healthcare, wearable devices use these techniques to continuously monitor patient 

signals without frequent recharging. In industrial IoT, predictive maintenance systems leverage energy-aware 

computation to operate continuously in harsh environments. In smart cities, edge devices optimize 

surveillance and traffic management while operating under strict energy budgets. These examples highlight 

that the system is not just a technical framework but also a practical enabler of sustainable computing across 

sectors. 

Edge Computing's Difficulties 

Edge computing has potential, but a number of obstacles prevent its broad use. Because edge 

devices are frequently limited by low-power processors and batteries, one of the main problems is limited 

computational and energy resources, which makes it challenging to complete complicated machine learning 

workloads. Since edge networks are made up of several devices with different software, hardware, and 

networking capabilities, scalability and heterogeneity present additional difficulties that make system setup 

and standardization more difficult. Since sensitive data is processed locally and needs strong safeguards 

against breaches and illegal access, data security and privacy continue to be major concerns. 

System performance can also be impacted by network latency and dependability, especially in 

situations when decisions must be made instantly. Lastly, there are major operational problems in managing 

and maintaining distributed edge devices, including software upgrades, fault tolerance, and resource 
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allocation. To fully profit from edge computing in IoT and AI-driven applications, these problems must be 

resolved. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Here are the findings from the case study experiments. Different instruction extensions that were 

introduced to the original RISC-V ISA have been used to group the results. 

 

4.1 Utilizing SIMD MAC instructions for performance 

 
Figure 4. Enhancement of cycle count performance using SIMD MAC instruction 

Given the abundance of data level parallelism found in neural networks, EXTREM EDGE was used 

to simulate a packed SIMD implementation of vectorized MAC instruction with four parallel vector lanes. 

This experiment produced an overall performance boost of 32% in 32-bit RISC-V processor designs and 45% 

in 64-bit RISC-V processor implementations, as illustrated in Figure 4 [16]. Using an actual scalar MAC 

instruction, the SIMD MAC experiment's results clearly demonstrate the benefits of the EXTREM-EDGE 

methodology, which was used to quickly and easily simulate SIMD MAC instructions in order to explore 

instruction design space. Without actually implementing the large vector "V" RISC-V ISA extension, 

EXTREM-EDGE users can study sophisticated vector ISA instructions by utilizing such ISA simulation 

techniques. 

4.2 Effectiveness of in-memory VMM training 

In end-to-end AI applications, a 17x gain on a small VMM kernel may not always correspond to an 

equivalent improvement. Therefore, we ran further tests to assess how in-memory VMM instruction affected 

the reference neural network model ResNet-8. The ResNet-8 benchmark neural network model saw an 

overall speedup of 4.41x thanks to in-memory VMM operations (including the overhead of VMM memory 

load/store sequences), as seen in Figure 5. 
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Figure 5. Comparing the ResNet-8 model's performance speedup due to MAC instructions and in-memory 

VMM instruction to that of a baseline RISC-V microprocessor 

 

 

Figure 6. Comparing the MobileNet device's speedup due to MAC instructions and in-memory VMM 

instructions to that of a baseline RISC-V CPU 

To better examine the effects of in-memory VMM in instruction, we assessed the results using the 

MLPerf Tiny benchmark's MobileNet V1 neural network model. The ResNet-8 model's typical 2D 

convolution layers are not the same as the depth-separable convolution layers seen in the MobileNet 

framework. For processing the entire MobileNet neural network model, EXTREM-EDGE improved 

performance by 1.35x with MAC procedures and 2.15x with the inclusion of in-memory VMM instructions 

to the RISC-V ISA, as shown in Figure 6. 
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5. CONCLUSION 

The design of energy-efficient computer systems has become a necessity in the era of the Internet of 

Things, where billions of devices must process and transmit data under severe power and performance 

constraints. This study has shown that integrating RISC-V extensions with deep learning accelerators offers a 

highly effective pathway toward achieving energy-efficient machine learning inference at the IoT edge. By 

leveraging the modularity of the RISC-V instruction set, specialized vector operations, and domain-specific 

accelerators, the system significantly reduces computational overhead, optimizes memory usage, and lowers 

energy consumption while preserving inference accuracy and speed. 

The exploration of applications across healthcare, smart cities, industrial IoT, and consumer 

electronics further demonstrates the practical relevance and scalability of this approach. At the same time, the 

incorporation of energy monitoring, dynamic power control, and communication-efficient strategies ensures 

that the architecture aligns with the sustainability requirements of large-scale IoT deployments. Ultimately, 

RISC-V based energy-efficient computer systems represent not just a technical advancement, but also a step 

toward creating a sustainable digital ecosystem. The insertion of AI functional units (AFU) to the processor 

pipeline by EXTREM-EDGE follows a strict integration strategy, enabling the execution of both AI and non-

AI operations on the same processor. EXTREM-EDGE designs have demonstrated up to 4.41x speedup 

utilizing a set of 3 (vmm.ld, vmm.sd, and vmm) unique instructions on the ResNet-8 neural network 

simulator from the MLPerf Tiny test, and up to 45% performance improvement with a single MAC 

instruction added to RISC-V ISA. 
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