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Weather forecasting plays a critical role across various sectors,
supporting strategic planning and reducing the impact of hazardous
climatic conditions. However, the inherently chaotic and nonlinear
nature of atmospheric systems limits the performance of conventional
forecasting approaches, often resulting in prediction inaccuracies and
heightened risk. This study proposes a quantum-driven predictive
framework that exploits the computational strengths of Quantum
Machine Learning (QML) and hybrid quantum—classical
optimization to enhance the accuracy and efficiency of modern
forecasting models. The framework employs Quantum Neural
Networks (QNNs) combined with Variational Quantum Circuits
(VQCs) to learn complex spatial-temporal dynamics embedded
within large meteorological datasets. Through quantum feature
encoding, key atmospheric indicators—including temperature,
humidity, wind velocity, and barometric pressure—are projected into
high-dimensional Hilbert spaces, enabling more expressive pattern
extraction and robust predictive behavior. Simulation results reveal
that the quantum-augmented approach surpasses traditional deep
learning architectures in both training convergence and forecast
precision when applied to extensive weather records. The hybrid
design further supports scalability by intelligently distributing
computational workloads between classical processors and quantum
hardware. Overall, this research demonstrates the transformative
potential of quantum computing in atmospheric modeling, offering a
foundation for future real-time forecasting systems capable of
managing the increasing complexity of global climate patterns.
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1. INTRODUCTION

Climate change has amplified both the intensity and frequency of typhoons, posing severe
risks to populations and infrastructure across the globe. As extreme weather events become more
common, the demand for highly reliable trajectory predictions has grown urgent, since accurate
forecasting is essential for effective disaster management, evacuation planning, and strategic
allocation of emergency resources. These measures substantially reduce potential casualties and
economic disruption. Taiwan is especially susceptible to such climatic hazards due to its steep,
mountainous landscape and geographic location along major typhoon pathways. The island
typically faces around [1] typhoons each year, in addition to numerous episodes of heavy rainfall,
which collectively impose significant socioeconomic burdens. Annual economic losses are
estimated at approximately 374.3 million Euros, stemming from damages to infrastructure,
agriculture, and broader economic activities. The frequency and severity of these events underscore
the necessity of developing more advanced, resilient forecasting systems capable of supporting
proactive climate adaptation and disaster-response strategies.

Traditional computational techniques have significantly advanced the field of weather
prediction; however, they continue to face limitations when attempting to capture the intricate
behavior of typhoon systems [2]. The chaotic characteristics of atmospheric processes, combined
with the extremely high dimensionality of meteorological variables, make accurate modeling
computationally demanding. Numerical Weather Prediction (NWP) models depend heavily on
large-scale supercomputing facilities, which require substantial financial investment and energy
consumption. As meteorological datasets grow in size and forecasting models become increasingly
complex, these computational burdens intensify, exposing scalability constraints in existing
methods. One of the most pressing challenges lies in the immense computational effort needed to
train and optimize large weather models.
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Figure 1. Weather Conditions Based on Supervised Learning

Random Forest (RF) is a widely adopted supervised learning technique that supports both
classification and regression tasks. As an ensemble-based approach, RF constructs a large number
of decision trees during training and aggregates their outputs to generate a more stable and accurate
prediction than any individual tree could achieve [3]. The fundamental unit of the Random Forest
algorithm is the decision tree—a hierarchical, tree-structured predictive model that represents a
sequence of decisions and their potential outcomes (Figure 2) [4]. In this structure, each internal
node corresponds to a decision rule based on specific input features, branching into different paths
that reflect various possible scenarios. The terminal or leaf nodes denote the final predicted classes
or continuous values derived from the input data. By combining the predictions of multiple
independently trained trees, RF effectively reduces overfitting, enhances generalization
performance, and improves the robustness of weather-related forecasting tasks.

1.1 Problem Statement

Weather forecasting presents a formidable computational challenge due to the inherently
chaotic, nonlinear, and highly dynamic behavior of atmospheric systems. Traditional Numerical
Weather Prediction (NWP) models depend heavily on classical high-performance computing
(HPC) infrastructures to numerically solve large sets of partial differential equations governing
atmospheric physics [5]. While these classical approaches have enabled significant advancements
in modern meteorology, they exhibit fundamental constraints in terms of processing speed,
scalability, and computational efficiency—especially when handling the exponentially growing
volume and dimensionality of global meteorological data. The increasing variability of climate
conditions and the rising occurrence of extreme weather events, including cyclones, floods, and
heatwaves, further amplify the demand for rapid, high-accuracy predictive systems. As a result, the
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main issue is that traditional weather forecasting models' limited predictive accuracy and
processing bottlenecks make it difficult for them to provide accurate and timely forecasts for
complicated atmospheric phenomena.

1.2 Major Contribution

This research makes several substantial contributions toward advancing guantum-assisted
environmental modeling.

= First, it presents a quantum-enhanced hybrid predictive framework that combines Quantum
Neural Networks (QNNs) with Variational Quantum Circuits (VQCs) to model short- and
medium-range atmospheric behavior. By leveraging quantum superposition and entanglement,
the framework captures the nonlinear and chaotic characteristics of weather systems more
effectively than conventional deep learning approaches.

= Additionally, the study introduces a specialized quantum feature-encoding strategy that
transforms classical meteorological variables—including temperature, humidity, wind velocity,
and pressure—into quantum states, enabling richer high-dimensional representations within
Hilbert space. This encoding mechanism enhances the model’s capability to identify subtle and
complex spatiotemporal correlations embedded in atmospheric datasets.

= The proposed model is rigorously validated on real-world meteorological datasets sourced from
institutions such as NCEP and ECMWF, where benchmarking results demonstrate a notable
25-30% improvement in predictive accuracy and significantly faster convergence compared to
classical models such as LSTM, CNN, and Random Forest.

= Furthermore, this work establishes an early foundation for the emerging field of Quantum
Meteorology by illustrating a systematic methodology for integrating quantum computation
into climate and environmental forecasting workflows, thus paving the way for highly scalable
and efficient next-generation weather prediction systems.

1.3 The paper is organized into five key sections:

1. Introduction — outlines the motivation, problem background, and significance of quantum-
enhanced weather forecasting.

2. Methodology — details the QEAFS framework, data collection, quantum feature encoding, and
hybrid model design.

3. Results and Conclusion — presents experimental findings, comparative performance analysis,
and future research directions.

2. LITERATURE REVIEW

Numerical Weather Prediction (NWP) systems and physics-driven atmospheric models
continue to serve as the primary operational tools for modern forecasting, yet the emergence of ML
techniques has substantially transformed the predictive landscape. Recent large-scale deep learning
frameworks— [6] most notably GraphCast and other Al-driven forecasting architectures—have
demonstrated that data-centric models can equal or surpass conventional NWP methods in short-
and medium-range forecasting accuracy while requiring only a fraction of the computational
resources. These developments reveal not only the growing maturity of data-driven forecasting but
also the significant potential of integrating alternative computational paradigms, such as quantum-
based approaches, into operational meteorology.
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A parallel body of research has examined the feasibility of incorporating quantum
computing to accelerate weather and climate modeling. Review studies in this area outline both the
promise and the practical constraints of quantum integration. Potential advantages include
accelerated linear algebra operations, high-dimensional state encoding, enhanced sampling
efficiency, and the ability to represent complex atmospheric processes in compact quantum forms.
However, these works also emphasize several persistent limitations [7]: noise in current quantum
devices, restricted qubit availability, architectural connectivity issues, and the inherent difficulty of
translating classical PDE-based atmospheric solvers onto quantum hardware. The consensus across
these assessments is that fully quantum NWP remains a long-term vision, while hybrid quantum-—
classical frameworks represent the most viable near-term strategy.

Emerging experimental studies have begun applying parameterized quantum circuits—
such as Variation VQCs and QNNs—to geophysical time-series prediction tasks including wind-
speed forecasting, temperature sequence modeling [8], and hydrological discharge prediction.
These investigations suggest that compact quantum circuits can learn specific temporal patterns
with competitive accuracy and, in some cases, faster convergence than classical deep learning
counterparts. Moreover, quantum feature mapping techniques based on angle or amplitude
encoding have shown the ability to generate enriched representations that improve downstream
prediction quality. Nevertheless, performance tends to be highly sensitive to dataset characteristics,
circuit design, and noise levels, indicating the need for rigorous benchmarking against strong
classical baselines.

Given the limitations of contemporary quantum hardware, most practical studies adopt
hybrid quantum-classical architectures, where quantum circuits handle feature transformation,
embedding, or sampling tasks while classical networks perform large-scale optimization and
gradient updates. These hybrid workflows have also been proposed for accelerating computational
bottlenecks in broader meteorological pipelines such as ensemble generation, assimilation, and
Monte Carlo—based uncertainty quantification [9]. Their consistent adoption in the literature
underscores their suitability as a realistic implementation pathway for early-stage quantum
meteorology.

Relevant insights also emerge from the quantum optimization literature, particularly
studies employing quantum annealing on D-Wave systems. Although primarily applied to domains
such as traffic control and vehicle routing, these works demonstrate how complex spatiotemporal
decision-making tasks can be reformulated within QUBO frameworks and solved using hybrid
guantum-—classical heuristics [10]. While not directly targeting atmospheric processes, these
methodological innovations offer valuable templates for incorporating quantum subroutines into
meteorological applications—for example, optimizing sensor placement, resource allocation, or
ensemble weighting strategies. Collectively, these strands of research provide a robust foundation
for exploring quantum-enhanced forecasting and validate the potential of hybrid quantum
architectures as the most practical engine for next-generation weather prediction.

3. METHODS AND MATERIALS

The present study employs a Quantum-Enhanced Atmospheric Forecasting Framework
(QEAFS) that integrates quantum computational principles with state-of-the-art classical machine
learning techniques to improve the predictive accuracy of complex atmospheric systems [11]. This
section provides a comprehensive description of the sampling design, data acquisition workflow,
guantum feature-encoding strategies, model development procedures, analytical methods, and
computational infrastructure used to implement the proposed hybrid forecasting architecture.
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3.1 Participants and Sampling

Although this study does not involve human participants, the term “participants” refers to
the meteorological observation stations and geospatial sampling nodes from which atmospheric
measurements were obtained. A total of more than 150 global stations from the National Centers
for Environmental Prediction (NCEP) [12], the European Centre for Medium-Range Weather
Forecasts (ECMWEF), and the NOAA Global Surface Summary of the Day (GSOD) were included.
A stratified random sampling technique was adopted to ensure the representation of distinct
climatic regimes—tropical, temperate, arid, continental, and polar—thereby capturing diverse
atmospheric behaviors and enhancing the model’s generalizability. This sampling strategy was
crucial for ensuring that the hybrid quantum-classical model learned robust spatiotemporal patterns
that extend beyond localized or region-specific meteorological characteristics.

3.2 Data Collection Method

Atmospheric variables—including temperature, relative humidity, wind speed, wind
direction, surface pressure, and precipitation—were collected at hourly and daily temporal
resolutions spanning a continuous 10-year period (2015-2025). Data acquisition was performed
through secure APIl-based downloads from NCEP, ECMWEF [13], and NOAA repositories,
ensuring data integrity and standardization. After retrieval, the dataset underwent a rigorous
cleaning process involving outlier detection, removal of corrupted entries, and imputation of
missing values using local-mean interpolation and temporal smoothing techniques. All features
were normalized to the interval [0,1] to ensure compatibility with quantum encoding schemes and
to minimize computational noise. Dimensionality reduction was applied using Principal
Component Analysis (PCA), preserving approximately 95% of the total variance while improving
model efficiency and reducing redundancy among correlated atmospheric parameters.

3.3 Quantum Feature Encoding and Model Design

Following preprocessing, the atmospheric data were transformed into quantum-compatible
vectors using two complementary encoding strategies: amplitude encoding and angle encoding.
Amplitude encoding compressed entire feature vectors into qubit amplitude distributions, enabling
the representation of globally correlated patterns. Angle encoding mapped individual features to
parametric rotation angles (Ry, Rz) [14], providing fine-grained control over local atmospheric
dynamics. These encoded features served as inputs to a Variational Quantum Circuit (VQC)
consisting of parameterized rotation gates and entangling CNOT operations. The circuit depth,
entanglement topology, and number of qubits were experimentally optimized to balance expressive
power against hardware-induced guantum noise. The hybrid architecture combined the quantum
VQC output with a classical Feed forward Neural Network (FNN) consisting of dense layers for
regression-based atmospheric forecasting. The hybrid optimization loop employed the parameter-
shift rule for quantum gradient estimation and standard backpropagation for classical layers. The
Mean Squared Error (MSE) function was used as the training objective, optimized with Adam
(learning rate = 0.001). This joint learning approach allowed the model to capitalize on the
representational richness of quantum states while leveraging classical networks for large-scale
learning.
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Figure 2. The proposed Diagram
3.4 Data Analysis and Evaluation

The analysis pipeline consisted of quantum circuit simulation, hybrid model training, and
comparative performance evaluation [15]. All quantum simulations were conducted using the IBM
Qiskit framework on both the ibmg_gasm_simulator and the ibmg_belem 5-qubit superconducting
guantum device. Classical components were implemented using TensorFlow and PyTorch to
ensure computational stability and reproducibility. The dataset was partitioned into training (80%),
validation (10%), and testing (10%) subsets, with early-stopping criteria employed to prevent
overfitting during the 150-epoch training process.

To evaluate the predictive capability of QEAFS, classical baseline models—including
Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNN), and
Random Forest (RF) regressors—were trained and benchmarked against the proposed quantum-
enhanced model. Performance metrics included Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and the Coefficient of Determination (R?), enabling a quantitative assessment of
predictive accuracy and model stability. Computational efficiency was further evaluated through
training-time analysis, convergence behavior, and quantum resource utilization metrics.

3.5 Computational Setup

All experiments were conducted on a high-performance hybrid computing platform
equipped with an Intel Core i9 (13th Gen) processor, 32 GB RAM, and an NVIDIA RTX 4070
GPU running Ubuntu 22.04 LTS. Quantum circuit execution and backend access were supported
through IBM Quantum Cloud services, enabling hardware-based testing of the variation circuits.
The complete workflow—from data preprocessing to hybrid model training—was developed in
Python 3.10, ensuring reproducibility, scalability, and seamless integration of quantum and
classical computational components.
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4. IMPLEMENTATION AND EXPERIMENTAL RESULTS
4.1 Implementation Overview

The Quantum-Enhanced Atmospheric Forecasting Framework (QEAFS) was implemented
through a hybrid quantum—classical computational architecture. Classical preprocessing and neural
network operations were developed in Python 3.10 using TensorFlow and PyTorch, while the
guantum components were constructed with IBM Qiskit. Both environments were integrated
through a hybrid optimization pipeline that employed the parameter-shift rule to estimate gradients
for the quantum circuit, whereas the Adam optimizer performed gradient-based learning for the
classical network.

During each experimental iteration [16], the cleaned and normalized meteorological inputs
were encoded and passed into a Variational Quantum Circuit (VQC) configured with six qubits and
three layers of entanglement. The circuit depth and entanglement topology were iteratively tuned to
balance expressivity with quantum noise reduction, ensuring stable convergence. The quantum
circuit outputs, obtained via measurements in the Pauli-Z basis, were subsequently forwarded to a
classical Feedforward Neural Network (FNN) comprising two dense layers with 64 and 32 neurons
for final regression-based prediction.

4.2 Performance Metrics and Benchmarking

To assess the forecasting capability of the model, three standard statistical evaluation
metrics were used: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) [17], and the
Coefficient of Determination (R?). The predictive performance of the proposed QEAFS framework
was benchmarked against established classical models, including Long Short-Term Memory
(LSTM), Convolutional Neural Networks (CNN), and the Random Forest Regressor (RF).

Table 1. Comparative performance of classical and quantum-enhanced forecasting models

Model RMSE | MAE | R2Score | Training Time (s)
Random Forest (RF) 241 198 |0.81 120
CNN 2.12 1.76 | 0.85 210
LSTM 1.86 154 |0.88 250
Quantum-Enhanced Model (QEAFS) | 1.32 1.09 |0.93 185

The results clearly indicate that the QEAFS model outperformed all classical benchmark
models, achieving the lowest RMSE (1.32) and MAE (1.09) values, along with the highest R? score
(0.93). In addition, the model exhibited slightly reduced training time compared to LSTM-based
architectures, suggesting that the quantum components facilitate faster convergence by efficiently
capturing high-dimensional and nonlinear atmospheric dependencies. Notably, the performance
gains became more pronounced as the size of the dataset increased, demonstrating the scalability
and computational advantage of the proposed hybrid quantum-classical framework.

4.3 Graphical Analysis of Forecast Accuracy

The comparative performance of the models was visualized through the following plot,
which illustrates the predicted vs. actual temperature variations for a given test period [18].
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Figure 3. Forecast Comparison between Quantum and Classical Models

Forecast Comparison between Quantum and Classical Models — showing the performance
difference in temperature forecasting in Figure 3.

4.4 Discussion of Results

The graphical analysis reveals that the Quantum-Enhanced Atmospheric Forecasting
System (QEAFS) produces a prediction curve that closely aligns with the actual temperature
trajectory, exhibiting minimal deviations even during rapid atmospheric fluctuations such as sharp
peaks and troughs. In comparison, classical deep learning models—including LSTM and CNN—
display noticeably higher lag and error magnitudes. This limitation arises from their reliance on
sequential or spatial feature extraction mechanisms, which often struggle to capture complex, high-
order temporal dependencies inherent in meteorological data. The Random Forest model provides
moderate predictive capability but lacks temporal continuity due to its non-sequential, tree-based
structure.

The superior accuracy of QEAFS can be attributed to its quantum feature encoding and
entanglement-driven learning, which enable the representation of multidimensional atmospheric
interactions within a compact Hilbert-space structure [19]. This capability enhances sensitivity to
dynamic relationships—such as humidity—temperature coupling and pressure-induced wind
variations—that classical models often underrepresent. Additionally, quantum parallelism
facilitates faster exploration of the hypothesis space, leading to more rapid convergence compared
to deep learning models that rely on computationally intensive backpropagation.

From an implementation standpoint, QEAFS also demonstrated notable computational
efficiency, completing training in 185 seconds—significantly faster than the LSTM model’s 250-
second training time—due to its optimized hybrid parameter-shift learning algorithm. Experimental
results further indicated that while increasing qubit count beyond six improved representational
capacity, it also amplified quantum noise; therefore, a 6-qubit configuration offered the most
effective balance between accuracy and stability.

Overall, the findings confirm that the quantum-enhanced forecasting framework surpasses
classical models in both predictive performance and training efficiency. These results demonstrate
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that hybrid quantum-classical systems are not only feasible but also strategically advantageous for
addressing large-scale, nonlinear, and chaotic forecasting challenges such as weather prediction.

5. CONCLUSION

This research introduces a robust quantum-enhanced framework for atmospheric
forecasting, aimed at improving predictive accuracy, computational efficiency, and scalability for
large-scale meteorological systems. The proposed Quantum-Enhanced Atmospheric Forecasting
System (QEAFS) employs a hybrid architecture that combines Variational Quantum Circuits
(VQCs) with Feedforward Neural Networks (FNNSs), enabling the model to leverage quantum
computational advantages for capturing complex, nonlinear atmospheric patterns.

Experimental findings clearly demonstrate that the QEAFS model surpasses classical
forecasting algorithms—including LSTM, CNN, and Random Forest—across all major evaluation
metrics. With an RMSE of 1.32, an MAE of 1.09, and an R2 score of 0.93, the model exhibits
superior precision, stability, and robustness. These results confirm that quantum-enhanced learning
can effectively process high-dimensional meteorological datasets, capturing intricate
interdependencies among atmospheric variables that traditional deep learning approaches often fail
to fully exploit.

The study further shows that quantum encoding techniques—specifically amplitude and
angle encoding—facilitate compact, high-fidelity representation of atmospheric relationships
within a Hilbert space, improving both learning speed and memory efficiency. The hybrid
optimization mechanism, combining parameter-shift gradient computation for quantum layers with
Adam-based classical optimization, proved computationally efficient and stable throughout
training. Importantly, the results indicate that even current small-scale quantum hardware (e.g., 6-
qubit VQCs) can vyield substantial forecasting improvements, underscoring the near-term
practicality of hybrid quantum approaches.

Beyond meteorology, the QEAFS framework offers transformative potential for a range of
dynamic prediction tasks. The underlying quantum principles can be extended to climate modeling,
traffic optimization, energy demand forecasting, environmental anomaly detection, and other
domains requiring the modeling of nonlinear, multi-dimensional systems. As quantum hardware
continues to progress—through increased qubit coherence, advanced error mitigation, and
widespread cloud access—real-time, high-accuracy quantum forecasting systems will become
increasingly feasible.

Looking ahead, several promising directions for future work emerge. First, the integration
of quantum recurrent architectures such as Quantum LSTM and Quantum GRU will be explored to
enhance long-term temporal dependency modeling. Second, future implementations will utilize
larger quantum processors (20+ qubits) to support higher-dimensional parallel encoding while
minimizing noise through improved error correction protocols. Third, the development of hybrid
multi-domain forecasting models—combining meteorological and traffic data—will enable
guantum-assisted smart city management systems capable of synchronized environmental and
mobility decision-making. Finally, incorporating explainable quantum learning frameworks will
enhance interpretability and transparency, supporting broader adoption of quantum forecasting
systems by climate researchers, policy makers, and operational agencies.

In conclusion, this study establishes a pioneering foundation for the application of
quantum-enhanced artificial intelligence in atmospheric forecasting. By integrating quantum
mechanics with modern deep learning methodologies, the QEAFS model sets a transformative
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trajectory for next-generation forecasting technologies—characterized by higher accuracy, faster
computation, and deeper insight into the complex dynamics governing Earth’s atmosphere.
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