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Weather forecasting plays a critical role across various sectors, 

supporting strategic planning and reducing the impact of hazardous 

climatic conditions. However, the inherently chaotic and nonlinear 

nature of atmospheric systems limits the performance of conventional 

forecasting approaches, often resulting in prediction inaccuracies and 

heightened risk. This study proposes a quantum-driven predictive 

framework that exploits the computational strengths of Quantum 

Machine Learning (QML) and hybrid quantum–classical 

optimization to enhance the accuracy and efficiency of modern 

forecasting models. The framework employs Quantum Neural 

Networks (QNNs) combined with Variational Quantum Circuits 

(VQCs) to learn complex spatial–temporal dynamics embedded 

within large meteorological datasets. Through quantum feature 

encoding, key atmospheric indicators—including temperature, 

humidity, wind velocity, and barometric pressure—are projected into 

high-dimensional Hilbert spaces, enabling more expressive pattern 

extraction and robust predictive behavior. Simulation results reveal 

that the quantum-augmented approach surpasses traditional deep 

learning architectures in both training convergence and forecast 

precision when applied to extensive weather records. The hybrid 

design further supports scalability by intelligently distributing 

computational workloads between classical processors and quantum 

hardware. Overall, this research demonstrates the transformative 

potential of quantum computing in atmospheric modeling, offering a 

foundation for future real-time forecasting systems capable of 

managing the increasing complexity of global climate patterns. 
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1. INTRODUCTION 

Climate change has amplified both the intensity and frequency of typhoons, posing severe 

risks to populations and infrastructure across the globe. As extreme weather events become more 

common, the demand for highly reliable trajectory predictions has grown urgent, since accurate 

forecasting is essential for effective disaster management, evacuation planning, and strategic 

allocation of emergency resources. These measures substantially reduce potential casualties and 

economic disruption. Taiwan is especially susceptible to such climatic hazards due to its steep, 

mountainous landscape and geographic location along major typhoon pathways. The island 

typically faces around [1] typhoons each year, in addition to numerous episodes of heavy rainfall, 

which collectively impose significant socioeconomic burdens. Annual economic losses are 

estimated at approximately 374.3 million Euros, stemming from damages to infrastructure, 

agriculture, and broader economic activities. The frequency and severity of these events underscore 

the necessity of developing more advanced, resilient forecasting systems capable of supporting 

proactive climate adaptation and disaster-response strategies. 

Traditional computational techniques have significantly advanced the field of weather 

prediction; however, they continue to face limitations when attempting to capture the intricate 

behavior of typhoon systems [2]. The chaotic characteristics of atmospheric processes, combined 

with the extremely high dimensionality of meteorological variables, make accurate modeling 

computationally demanding. Numerical Weather Prediction (NWP) models depend heavily on 

large-scale supercomputing facilities, which require substantial financial investment and energy 

consumption. As meteorological datasets grow in size and forecasting models become increasingly 

complex, these computational burdens intensify, exposing scalability constraints in existing 

methods. One of the most pressing challenges lies in the immense computational effort needed to 

train and optimize large weather models.  



 JCAIT      

Quantum-Enhanced Models for Predicting Atmospheric Dynamics in Weather Forecasting 

28 

 

Figure 1. Weather Conditions Based on Supervised Learning 

Random Forest (RF) is a widely adopted supervised learning technique that supports both 

classification and regression tasks. As an ensemble-based approach, RF constructs a large number 

of decision trees during training and aggregates their outputs to generate a more stable and accurate 

prediction than any individual tree could achieve [3]. The fundamental unit of the Random Forest 

algorithm is the decision tree—a hierarchical, tree-structured predictive model that represents a 

sequence of decisions and their potential outcomes (Figure 2) [4]. In this structure, each internal 

node corresponds to a decision rule based on specific input features, branching into different paths 

that reflect various possible scenarios. The terminal or leaf nodes denote the final predicted classes 

or continuous values derived from the input data. By combining the predictions of multiple 

independently trained trees, RF effectively reduces overfitting, enhances generalization 

performance, and improves the robustness of weather-related forecasting tasks. 

1.1 Problem Statement 

Weather forecasting presents a formidable computational challenge due to the inherently 

chaotic, nonlinear, and highly dynamic behavior of atmospheric systems. Traditional Numerical 

Weather Prediction (NWP) models depend heavily on classical high-performance computing 

(HPC) infrastructures to numerically solve large sets of partial differential equations governing 

atmospheric physics [5]. While these classical approaches have enabled significant advancements 

in modern meteorology, they exhibit fundamental constraints in terms of processing speed, 

scalability, and computational efficiency—especially when handling the exponentially growing 

volume and dimensionality of global meteorological data. The increasing variability of climate 

conditions and the rising occurrence of extreme weather events, including cyclones, floods, and 

heatwaves, further amplify the demand for rapid, high-accuracy predictive systems. As a result, the 
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main issue is that traditional weather forecasting models' limited predictive accuracy and 

processing bottlenecks make it difficult for them to provide accurate and timely forecasts for 

complicated atmospheric phenomena. 

1.2 Major Contribution 

This research makes several substantial contributions toward advancing quantum-assisted 

environmental modeling.  

 First, it presents a quantum-enhanced hybrid predictive framework that combines Quantum 

Neural Networks (QNNs) with Variational Quantum Circuits (VQCs) to model short- and 

medium-range atmospheric behavior. By leveraging quantum superposition and entanglement, 

the framework captures the nonlinear and chaotic characteristics of weather systems more 

effectively than conventional deep learning approaches. 

 Additionally, the study introduces a specialized quantum feature-encoding strategy that 

transforms classical meteorological variables—including temperature, humidity, wind velocity, 

and pressure—into quantum states, enabling richer high-dimensional representations within 

Hilbert space. This encoding mechanism enhances the model’s capability to identify subtle and 

complex spatiotemporal correlations embedded in atmospheric datasets.  

 The proposed model is rigorously validated on real-world meteorological datasets sourced from 

institutions such as NCEP and ECMWF, where benchmarking results demonstrate a notable 

25–30% improvement in predictive accuracy and significantly faster convergence compared to 

classical models such as LSTM, CNN, and Random Forest.  

 Furthermore, this work establishes an early foundation for the emerging field of Quantum 

Meteorology by illustrating a systematic methodology for integrating quantum computation 

into climate and environmental forecasting workflows, thus paving the way for highly scalable 

and efficient next-generation weather prediction systems. 

1.3 The paper is organized into five key sections: 

1. Introduction – outlines the motivation, problem background, and significance of quantum-

enhanced weather forecasting. 

2. Methodology – details the QEAFS framework, data collection, quantum feature encoding, and 

hybrid model design. 

3. Results and Conclusion – presents experimental findings, comparative performance analysis, 

and future research directions. 

 

2. LITERATURE REVIEW 

Numerical Weather Prediction (NWP) systems and physics-driven atmospheric models 

continue to serve as the primary operational tools for modern forecasting, yet the emergence of ML 

techniques has substantially transformed the predictive landscape. Recent large-scale deep learning 

frameworks— [6] most notably GraphCast and other AI-driven forecasting architectures—have 

demonstrated that data-centric models can equal or surpass conventional NWP methods in short- 

and medium-range forecasting accuracy while requiring only a fraction of the computational 

resources. These developments reveal not only the growing maturity of data-driven forecasting but 

also the significant potential of integrating alternative computational paradigms, such as quantum-

based approaches, into operational meteorology. 
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A parallel body of research has examined the feasibility of incorporating quantum 

computing to accelerate weather and climate modeling. Review studies in this area outline both the 

promise and the practical constraints of quantum integration. Potential advantages include 

accelerated linear algebra operations, high-dimensional state encoding, enhanced sampling 

efficiency, and the ability to represent complex atmospheric processes in compact quantum forms. 

However, these works also emphasize several persistent limitations [7]: noise in current quantum 

devices, restricted qubit availability, architectural connectivity issues, and the inherent difficulty of 

translating classical PDE-based atmospheric solvers onto quantum hardware. The consensus across 

these assessments is that fully quantum NWP remains a long-term vision, while hybrid quantum–

classical frameworks represent the most viable near-term strategy. 

Emerging experimental studies have begun applying parameterized quantum circuits—

such as Variation VQCs and QNNs—to geophysical time-series prediction tasks including wind-

speed forecasting, temperature sequence modeling [8], and hydrological discharge prediction. 

These investigations suggest that compact quantum circuits can learn specific temporal patterns 

with competitive accuracy and, in some cases, faster convergence than classical deep learning 

counterparts. Moreover, quantum feature mapping techniques based on angle or amplitude 

encoding have shown the ability to generate enriched representations that improve downstream 

prediction quality. Nevertheless, performance tends to be highly sensitive to dataset characteristics, 

circuit design, and noise levels, indicating the need for rigorous benchmarking against strong 

classical baselines. 

Given the limitations of contemporary quantum hardware, most practical studies adopt 

hybrid quantum–classical architectures, where quantum circuits handle feature transformation, 

embedding, or sampling tasks while classical networks perform large-scale optimization and 

gradient updates. These hybrid workflows have also been proposed for accelerating computational 

bottlenecks in broader meteorological pipelines such as ensemble generation, assimilation, and 

Monte Carlo–based uncertainty quantification [9]. Their consistent adoption in the literature 

underscores their suitability as a realistic implementation pathway for early-stage quantum 

meteorology. 

Relevant insights also emerge from the quantum optimization literature, particularly 

studies employing quantum annealing on D-Wave systems. Although primarily applied to domains 

such as traffic control and vehicle routing, these works demonstrate how complex spatiotemporal 

decision-making tasks can be reformulated within QUBO frameworks and solved using hybrid 

quantum–classical heuristics [10]. While not directly targeting atmospheric processes, these 

methodological innovations offer valuable templates for incorporating quantum subroutines into 

meteorological applications—for example, optimizing sensor placement, resource allocation, or 

ensemble weighting strategies. Collectively, these strands of research provide a robust foundation 

for exploring quantum-enhanced forecasting and validate the potential of hybrid quantum 

architectures as the most practical engine for next-generation weather prediction. 

 

3. METHODS AND MATERIALS 

The present study employs a Quantum-Enhanced Atmospheric Forecasting Framework 

(QEAFS) that integrates quantum computational principles with state-of-the-art classical machine 

learning techniques to improve the predictive accuracy of complex atmospheric systems [11]. This 

section provides a comprehensive description of the sampling design, data acquisition workflow, 

quantum feature-encoding strategies, model development procedures, analytical methods, and 

computational infrastructure used to implement the proposed hybrid forecasting architecture. 
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3.1 Participants and Sampling 

Although this study does not involve human participants, the term “participants” refers to 

the meteorological observation stations and geospatial sampling nodes from which atmospheric 

measurements were obtained. A total of more than 150 global stations from the National Centers 

for Environmental Prediction (NCEP) [12], the European Centre for Medium-Range Weather 

Forecasts (ECMWF), and the NOAA Global Surface Summary of the Day (GSOD) were included. 

A stratified random sampling technique was adopted to ensure the representation of distinct 

climatic regimes—tropical, temperate, arid, continental, and polar—thereby capturing diverse 

atmospheric behaviors and enhancing the model’s generalizability. This sampling strategy was 

crucial for ensuring that the hybrid quantum-classical model learned robust spatiotemporal patterns 

that extend beyond localized or region-specific meteorological characteristics. 

3.2 Data Collection Method 

Atmospheric variables—including temperature, relative humidity, wind speed, wind 

direction, surface pressure, and precipitation—were collected at hourly and daily temporal 

resolutions spanning a continuous 10-year period (2015–2025). Data acquisition was performed 

through secure API-based downloads from NCEP, ECMWF [13], and NOAA repositories, 

ensuring data integrity and standardization. After retrieval, the dataset underwent a rigorous 

cleaning process involving outlier detection, removal of corrupted entries, and imputation of 

missing values using local-mean interpolation and temporal smoothing techniques. All features 

were normalized to the interval [0,1] to ensure compatibility with quantum encoding schemes and 

to minimize computational noise. Dimensionality reduction was applied using Principal 

Component Analysis (PCA), preserving approximately 95% of the total variance while improving 

model efficiency and reducing redundancy among correlated atmospheric parameters. 

3.3 Quantum Feature Encoding and Model Design 

Following preprocessing, the atmospheric data were transformed into quantum-compatible 

vectors using two complementary encoding strategies: amplitude encoding and angle encoding. 

Amplitude encoding compressed entire feature vectors into qubit amplitude distributions, enabling 

the representation of globally correlated patterns. Angle encoding mapped individual features to 

parametric rotation angles (Ry, Rz) [14], providing fine-grained control over local atmospheric 

dynamics. These encoded features served as inputs to a Variational Quantum Circuit (VQC) 

consisting of parameterized rotation gates and entangling CNOT operations. The circuit depth, 

entanglement topology, and number of qubits were experimentally optimized to balance expressive 

power against hardware-induced quantum noise. The hybrid architecture combined the quantum 

VQC output with a classical Feed forward Neural Network (FNN) consisting of dense layers for 

regression-based atmospheric forecasting. The hybrid optimization loop employed the parameter-

shift rule for quantum gradient estimation and standard backpropagation for classical layers. The 

Mean Squared Error (MSE) function was used as the training objective, optimized with Adam 

(learning rate = 0.001). This joint learning approach allowed the model to capitalize on the 

representational richness of quantum states while leveraging classical networks for large-scale 

learning. 
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Figure 2. The proposed Diagram 

3.4 Data Analysis and Evaluation 

The analysis pipeline consisted of quantum circuit simulation, hybrid model training, and 

comparative performance evaluation [15]. All quantum simulations were conducted using the IBM 

Qiskit framework on both the ibmq_qasm_simulator and the ibmq_belem 5-qubit superconducting 

quantum device. Classical components were implemented using TensorFlow and PyTorch to 

ensure computational stability and reproducibility. The dataset was partitioned into training (80%), 

validation (10%), and testing (10%) subsets, with early-stopping criteria employed to prevent 

overfitting during the 150-epoch training process. 

To evaluate the predictive capability of QEAFS, classical baseline models—including 

Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNN), and 

Random Forest (RF) regressors—were trained and benchmarked against the proposed quantum-

enhanced model. Performance metrics included Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and the Coefficient of Determination (R²), enabling a quantitative assessment of 

predictive accuracy and model stability. Computational efficiency was further evaluated through 

training-time analysis, convergence behavior, and quantum resource utilization metrics. 

3.5 Computational Setup 

All experiments were conducted on a high-performance hybrid computing platform 

equipped with an Intel Core i9 (13th Gen) processor, 32 GB RAM, and an NVIDIA RTX 4070 

GPU running Ubuntu 22.04 LTS. Quantum circuit execution and backend access were supported 

through IBM Quantum Cloud services, enabling hardware-based testing of the variation circuits. 

The complete workflow—from data preprocessing to hybrid model training—was developed in 

Python 3.10, ensuring reproducibility, scalability, and seamless integration of quantum and 

classical computational components. 
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4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

4.1 Implementation Overview 

The Quantum-Enhanced Atmospheric Forecasting Framework (QEAFS) was implemented 

through a hybrid quantum–classical computational architecture. Classical preprocessing and neural 

network operations were developed in Python 3.10 using TensorFlow and PyTorch, while the 

quantum components were constructed with IBM Qiskit. Both environments were integrated 

through a hybrid optimization pipeline that employed the parameter-shift rule to estimate gradients 

for the quantum circuit, whereas the Adam optimizer performed gradient-based learning for the 

classical network. 

During each experimental iteration [16], the cleaned and normalized meteorological inputs 

were encoded and passed into a Variational Quantum Circuit (VQC) configured with six qubits and 

three layers of entanglement. The circuit depth and entanglement topology were iteratively tuned to 

balance expressivity with quantum noise reduction, ensuring stable convergence. The quantum 

circuit outputs, obtained via measurements in the Pauli-Z basis, were subsequently forwarded to a 

classical Feedforward Neural Network (FNN) comprising two dense layers with 64 and 32 neurons 

for final regression-based prediction. 

4.2 Performance Metrics and Benchmarking 

To assess the forecasting capability of the model, three standard statistical evaluation 

metrics were used: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) [17], and the 

Coefficient of Determination (R²). The predictive performance of the proposed QEAFS framework 

was benchmarked against established classical models, including Long Short-Term Memory 

(LSTM), Convolutional Neural Networks (CNN), and the Random Forest Regressor (RF). 

 

Table 1. Comparative performance of classical and quantum-enhanced forecasting models 

Model RMSE MAE R² Score Training Time (s) 

Random Forest (RF) 2.41 1.98 0.81 120 

CNN 2.12 1.76 0.85 210 

LSTM 1.86 1.54 0.88 250 

Quantum-Enhanced Model (QEAFS) 1.32 1.09 0.93 185 

 

The results clearly indicate that the QEAFS model outperformed all classical benchmark 

models, achieving the lowest RMSE (1.32) and MAE (1.09) values, along with the highest R² score 

(0.93). In addition, the model exhibited slightly reduced training time compared to LSTM-based 

architectures, suggesting that the quantum components facilitate faster convergence by efficiently 

capturing high-dimensional and nonlinear atmospheric dependencies. Notably, the performance 

gains became more pronounced as the size of the dataset increased, demonstrating the scalability 

and computational advantage of the proposed hybrid quantum-classical framework. 

4.3 Graphical Analysis of Forecast Accuracy 

The comparative performance of the models was visualized through the following plot, 

which illustrates the predicted vs. actual temperature variations for a given test period [18]. 
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Figure 3. Forecast Comparison between Quantum and Classical Models 

Forecast Comparison between Quantum and Classical Models — showing the performance 

difference in temperature forecasting in Figure 3. 

4.4 Discussion of Results 

The graphical analysis reveals that the Quantum-Enhanced Atmospheric Forecasting 

System (QEAFS) produces a prediction curve that closely aligns with the actual temperature 

trajectory, exhibiting minimal deviations even during rapid atmospheric fluctuations such as sharp 

peaks and troughs. In comparison, classical deep learning models—including LSTM and CNN—

display noticeably higher lag and error magnitudes. This limitation arises from their reliance on 

sequential or spatial feature extraction mechanisms, which often struggle to capture complex, high-

order temporal dependencies inherent in meteorological data. The Random Forest model provides 

moderate predictive capability but lacks temporal continuity due to its non-sequential, tree-based 

structure. 

The superior accuracy of QEAFS can be attributed to its quantum feature encoding and 

entanglement-driven learning, which enable the representation of multidimensional atmospheric 

interactions within a compact Hilbert-space structure [19]. This capability enhances sensitivity to 

dynamic relationships—such as humidity–temperature coupling and pressure-induced wind 

variations—that classical models often underrepresent. Additionally, quantum parallelism 

facilitates faster exploration of the hypothesis space, leading to more rapid convergence compared 

to deep learning models that rely on computationally intensive backpropagation. 

From an implementation standpoint, QEAFS also demonstrated notable computational 

efficiency, completing training in 185 seconds—significantly faster than the LSTM model’s 250-

second training time—due to its optimized hybrid parameter-shift learning algorithm. Experimental 

results further indicated that while increasing qubit count beyond six improved representational 

capacity, it also amplified quantum noise; therefore, a 6-qubit configuration offered the most 

effective balance between accuracy and stability. 

Overall, the findings confirm that the quantum-enhanced forecasting framework surpasses 

classical models in both predictive performance and training efficiency. These results demonstrate 
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that hybrid quantum-classical systems are not only feasible but also strategically advantageous for 

addressing large-scale, nonlinear, and chaotic forecasting challenges such as weather prediction. 

 

5. CONCLUSION 

This research introduces a robust quantum-enhanced framework for atmospheric 

forecasting, aimed at improving predictive accuracy, computational efficiency, and scalability for 

large-scale meteorological systems. The proposed Quantum-Enhanced Atmospheric Forecasting 

System (QEAFS) employs a hybrid architecture that combines Variational Quantum Circuits 

(VQCs) with Feedforward Neural Networks (FNNs), enabling the model to leverage quantum 

computational advantages for capturing complex, nonlinear atmospheric patterns. 

Experimental findings clearly demonstrate that the QEAFS model surpasses classical 

forecasting algorithms—including LSTM, CNN, and Random Forest—across all major evaluation 

metrics. With an RMSE of 1.32, an MAE of 1.09, and an R² score of 0.93, the model exhibits 

superior precision, stability, and robustness. These results confirm that quantum-enhanced learning 

can effectively process high-dimensional meteorological datasets, capturing intricate 

interdependencies among atmospheric variables that traditional deep learning approaches often fail 

to fully exploit. 

The study further shows that quantum encoding techniques—specifically amplitude and 

angle encoding—facilitate compact, high-fidelity representation of atmospheric relationships 

within a Hilbert space, improving both learning speed and memory efficiency. The hybrid 

optimization mechanism, combining parameter-shift gradient computation for quantum layers with 

Adam-based classical optimization, proved computationally efficient and stable throughout 

training. Importantly, the results indicate that even current small-scale quantum hardware (e.g., 6-

qubit VQCs) can yield substantial forecasting improvements, underscoring the near-term 

practicality of hybrid quantum approaches. 

Beyond meteorology, the QEAFS framework offers transformative potential for a range of 

dynamic prediction tasks. The underlying quantum principles can be extended to climate modeling, 

traffic optimization, energy demand forecasting, environmental anomaly detection, and other 

domains requiring the modeling of nonlinear, multi-dimensional systems. As quantum hardware 

continues to progress—through increased qubit coherence, advanced error mitigation, and 

widespread cloud access—real-time, high-accuracy quantum forecasting systems will become 

increasingly feasible. 

Looking ahead, several promising directions for future work emerge. First, the integration 

of quantum recurrent architectures such as Quantum LSTM and Quantum GRU will be explored to 

enhance long-term temporal dependency modeling. Second, future implementations will utilize 

larger quantum processors (20+ qubits) to support higher-dimensional parallel encoding while 

minimizing noise through improved error correction protocols. Third, the development of hybrid 

multi-domain forecasting models—combining meteorological and traffic data—will enable 

quantum-assisted smart city management systems capable of synchronized environmental and 

mobility decision-making. Finally, incorporating explainable quantum learning frameworks will 

enhance interpretability and transparency, supporting broader adoption of quantum forecasting 

systems by climate researchers, policy makers, and operational agencies. 

In conclusion, this study establishes a pioneering foundation for the application of 

quantum-enhanced artificial intelligence in atmospheric forecasting. By integrating quantum 

mechanics with modern deep learning methodologies, the QEAFS model sets a transformative 



 JCAIT      

Quantum-Enhanced Models for Predicting Atmospheric Dynamics in Weather Forecasting 

36 

trajectory for next-generation forecasting technologies—characterized by higher accuracy, faster 

computation, and deeper insight into the complex dynamics governing Earth’s atmosphere. 
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