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The rapid growth of Electronic Health Records (EHRs), along with
the need for accurate, real-time clinical documentation, has pushed
traditional computing methods to their operational limits.
Conventional machine learning techniques often fall short when
handling the heterogeneous, high-dimensional nature of healthcare
data—especially in situations where clinical decisions must be made
quickly and reliably. To overcome these challenges, this study
introduces a Quantum Computing—Enabled Clinical Decision
Support System (QC-CDSS), which integrates quantum machine
learning (QML) with advanced deep learning models to improve
diagnostic accuracy and predictive performance. The proposed
framework utilizes quantum-driven feature extraction, hybrid
variational quantum circuits, and quantum kernel-based classifiers to
process both structured EHR records and unstructured clinical
narratives. In parallel, sophisticated natural language processing
methods, including transformer-based architectures, are employed to
capture semantic, contextual, and temporal patterns from physician
notes, discharge summaries, radiology interpretations, and related
clinical text. The convergence of these techniques—particularly the
integration of QML—presents promising opportunities for achieving
more effective decision support and faster analysis of high-
dimensional medical data. This paper discusses the core concepts,
major applications, existing challenges, and future research pathways
for incorporating quantum-enhanced machine learning into clinical
decision-making systems, emphasizing their potential to address
complex healthcare problems more efficiently.
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1. INTRODUCTION

The rapid digitalization of healthcare has led to an unprecedented expansion of Electronic
Health Records (EHRs) and real-time clinical documentation, creating a rich yet highly complex
data ecosystem that supports modern clinical decision-making [1]. EHRs combine structured
attributes—such as laboratory results, medication profiles, diagnostic codes, and longitudinal
patient histories—with large volumes of unstructured content, including physician notes, discharge
summaries, and radiology narratives. This inherent heterogeneity introduces considerable
challenges for traditional machine learning and deep learning models, which often struggle to
process sparse, irregular, and high-dimensional clinical data, particularly in scenarios that require
rapid and context-sensitive predictions. As healthcare systems increasingly rely on Al-powered
Clinical Decision Support Systems (CDSS), the limitations of classical computational techniques
become more evident, especially when real-time performance and high diagnostic precision are
essential.

Recent advancements in computational intelligence have become crucial for addressing
these bottlenecks [2]. Machine learning has shown strong capabilities in analyzing diverse medical
datasets for tasks such as predictive modeling, anomaly detection, and patient risk stratification,
supporting applications ranging from medical imaging to precision therapeutics. However, as data
complexity and volume continue to rise [3], classical ML approaches struggle to maintain the
computational efficiency needed for immediate clinical decision support.

QC, grounded in the principles of gquantum mechanics, offers a promising path toward
overcoming these scalability challenges. Quantum models have shown potential advantages in
solving certain optimization and high-dimensional feature-mapping problems relevant to healthcare
analytics. Yet, despite this theoretical promise, current quantum devices and algorithms remain in
the early stages of development [4]. Their practical usefulness for real-world ML tasks—especially
those involving large-scale clinical datasets—has not yet exceeded classical methods. While
guantum speedups have been demonstrated in narrowly defined problem settings, extending these
gains to broader medical data processing remains an active area of research.
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Figure 1. Diagrammatic representation of the main uses of quantum computing (QC) in the medical
field

Figure 1 illustrates the broad spectrum of medical domains where QC is expected to make
a significant impact. From accelerating drug discovery and advancing genomic analysis to
enhancing diagnostic accuracy [5], supporting Al-driven healthcare systems, and improving
radiotherapy planning, QC offers transformative computational advantages. Its ability to process
complex, high-dimensional data and solve optimization problems more efficiently positions it as a
powerful tool for future medical innovation. Each branch of the diagram highlights a critical area in
which QC can meaningfully contribute to faster, more precise, and more intelligent healthcare
solutions.

1.1 Problem Statement

The rapid growth of Electronic Health Records (EHRs) and modern clinical documentation
has resulted in vast, heterogeneous datasets that demand fast, intelligent, and context-aware
computational processing to enable accurate clinical decision-making. Yet, current clinical decision
support systems often fall short due to the inherent complexity of these datasets, which include
high-dimensional variables, irregular temporal sequences, and large volumes of unstructured
narrative text. Classical machine learning and deep learning approaches typically require
substantial computational power and prolonged training cycles, making them impractical for real-
time use in time-sensitive clinical scenarios. Additionally, these models frequently struggle to learn
the intricate nonlinear dependencies among clinical features, which can lead to incomplete or
inaccurate predictions with potential risks to patient safety. Scalability further remains a major
hurdle as continuously expanding clinical datasets place increasing strain on conventional
computational infrastructures, limiting their ability to support large populations and high-frequency
data streams. These limitations underscore the urgent need for an advanced computational
paradigm capable of delivering faster processing, richer representational learning, and improved
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predictive accuracy by effectively leveraging the combined strengths of structured EHRs and
unstructured clinical documentation.

1.2 Major Contributions

This study makes several significant contributions toward advancing intelligent clinical
decision support through the integration of quantum computing with electronic health records and
clinical documentation.

o First, it introduces a unified quantum-—classical framework that leverages quantum machine
learning models to efficiently process complex, multidimensional EHR data while
simultaneously utilizing transformer-based natural language processing to extract meaningful
insights from unstructured clinical narratives. By merging these two data streams, the proposed
system generates a holistic and context-rich patient representation that enhances diagnostic and
predictive accuracy.

o Second, the framework applies quantum-enhanced feature extraction and optimization
methods, enabling faster computation and improved modeling of nonlinear clinical
dependencies that are difficult for classical systems to capture. This quantum advantage
strengthens the system’s ability to support real-time decision-making in high-risk medical
scenarios. Third, the study demonstrates how quantum acceleration can significantly reduce
computational burden in both training and inference phases, thereby improving scalability and
allowing the model to adapt to continuously expanding healthcare datasets.

o Finally, this research contributes to the emerging field of quantum health informatics by
providing a practical, implementable architecture for integrating quantum computing into
clinical workflows, offering a foundation for next-generation clinical decision support systems
capable of delivering precise, efficient, and context-aware recommendations across diverse
healthcare settings.

This paper examines the emerging convergence of QC and ML within the domain of
medical decision-making. It offers an in-depth evaluation of current research developments,
technological innovations, and the practical challenges associated with integrating these advanced
computational tools into healthcare systems. The paper is organized as follows: Section 2
introduces the foundational principles of QC and ML, establishing the theoretical background
necessary for understanding their combined potential. Section 3 explores their current and
prospective applications in clinical decision support and diagnostic intelligence. Section 4
addresses the major challenges and limitations hindering widespread adoption, including
computational constraints, data complexity, and implementation barriers. Finally, Section 5
highlights emerging opportunities and future research directions that may further strengthen the
role of QC-ML integration in advancing medical decision-making.

2. LITERATURE REVIEW

A hybrid Deep Learning (DL) and Fuzzy Logic (FL) system has been developed to
perform automated semantic segmentation (SS) of tumors in Breast Ultrasound (BUS) images. The
proposed framework consists of two main components: a convolutional neural network (CNN)-
based segmentation module and an FL-driven preprocessing stage. In this work, eight widely used
CNN-based SS approaches were evaluated [6], an enhanced VGG16-based architecture
incorporating an attention mechanism for breast cancer classification. Their attention model
effectively differentiates between irrelevant background features and target lesions in ultrasound
images. They further introduced a hybrid loss function by integrating the logarithm of the
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hyperbolic cosine loss with binary cross-entropy to reduce discrepancies between label annotations
and lesion classification outcomes.

Advancements in computational intelligence for healthcare analytics have accelerated in
recent years, supported by the growing volume of data stored in Electronic Health Records (EHRS)
and clinical documentation. Traditional clinical decision support systems (CDSS) relied mainly on
machine learning and deep learning models to detect disease patterns, assess patient risk, and
support diagnostic decision-making. Early approaches were limited to rule-based algorithms and
statistical models that processed structured data such as laboratory values, vital signs, and
medication histories. However, these models struggled to capture the rich information contained
within unstructured clinical text— including physician notes, discharge summaries, radiology
reports, and observational narratives [7]. Consequently, researchers increasingly turned to
advanced natural language processing (NLP) and deep learning techniques, such as recurrent neural
networks (RNNs), long short-term memory (LSTM) networks, and transformer-based models, to
better understand and extract clinical meaning. Although these models significantly improved
predictive accuracy, they remain computationally demanding and often impractical for real-time
CDSS applications involving high-volume healthcare data.

Simultaneously, the digital evolution of healthcare has intensified the challenge of
analyzing high-dimensional clinical datasets. Modern EHR systems store extensive patient
histories, diagnostic codes, imaging metadata, treatment outcomes, and physiological monitoring
data, creating datasets of immense size and complexity [8]. Moreover, clinical documentation—
representing more than 70% of data captured in some hospitals—introduces additional challenges
due to inconsistent phrasing, diverse writing styles, contextual nuances, and temporal
dependencies. Biomedical NLP models such as BioBERT, ClinicalBERT, and MedGPT-like
architectures have demonstrated strong performance in understanding clinical text, yet they require
considerable computational power for both fine-tuning and inference, posing challenges for
resource-constrained healthcare institutions.

As traditional computing approaches became insufficient for handling these increasingly
complex workloads, researchers began exploring hybrid and distributed computational paradigms.
Cloud-based CDSS platforms offered scalability and powerful remote processing capabilities,
enabling the execution of large-scale deep learning pipelines [9]. However, cloud reliance raises
concerns regarding latency, privacy, and regulatory compliance, particularly under frameworks
such as HIPAA. Edge computing aimed to address latency and privacy issues by relocating
computation closer to the data source; yet edge devices typically lack the processing capacity
necessary for advanced deep learning or large-scale EHR analytics. This mismatch between
computational demand and available hardware has motivated researchers to explore emerging
paradigms capable of delivering exponential performance improvements.

QC has emerged as a promising solution to these limitations, offering the potential to
address computational bottlenecks inherent in classical systems. Technologies such as Noisy
Intermediate-Scale Quantum (NISQ) processors, variational quantum circuits (VQCs), and
guantum-enhanced optimization algorithms enable new avenues for processing high-dimensional,
nonlinear healthcare data. Early breakthroughs in quantum machine learning (QML) have
demonstrated advantages in clustering, classification, and feature extraction through quantum
kernels and hybrid quantum—classical neural networks [10] . Although QML research in healthcare
has primarily focused on genomics, molecular simulation, and disease classification, its application
within EHR-driven CDSS remains an emerging research frontier. Quantum parallelism and
guantum-enhanced optimization offer strong potential for improving real-time clinical analytics.

An especially promising direction involves integrating quantum computing with clinical
NLP. Unstructured clinical documentation contains highly nuanced information crucial for accurate
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diagnosis and clinical reasoning [11]. Quantum NLP approaches, including quantum-enhanced
tokenization and embedding strategies have been proposed to reduce the computational overhead of
semantic processing and accelerate the extraction of clinical context. Although still in early
development stages, recent findings suggest that quantum-based text embedding methods may
significantly increase the efficiency of language model components. Such improvements could
revolutionize the processing of the massive volumes of unstructured text generated daily within
healthcare environments.

Despite these advancements, existing CDSS models continue to face challenges in
scalability, computational efficiency, and their ability to unify structured EHR data with
unstructured clinical narratives [12]. The literature consistently indicates a persistent gap between
the complexity of modern clinical decision-making and the computational capabilities of classical
models. Deep learning systems often struggle with long inference times, high memory demands,
and difficulties adapting to heterogeneous clinical datasets, limiting their ability to function reliably
within real-time clinical workflows. In contrast, quantum computing offers a fundamentally
different computational paradigm that can help overcome these limitations through quantum
parallelism, hybrid architectures, and enhanced optimization.

Therefore, there is a growing need for a comprehensive, integrated framework that
leverages quantum machine learning, advanced NLP, and EHR analytics to improve the predictive
performance and real-time efficiency of CDSS [13]. While prior studies have demonstrated isolated
progress in deep learning, EHR management, and quantum computing, integrated solutions remain
limited. This literature review forms the foundation for proposing a unified guantum-enabled
CDSS architecture designed to address long-standing challenges related to complexity,
computational burden, scalability, and precision in modern healthcare analytics.

3. METHODS AND MATERIALS

This section outlines the methodological foundation, participant selection criteria, data
acquisition protocols, preprocessing pipelines, and analytical strategies employed in the
development of the Quantum Computing—Enabled Clinical Decision Support System (QC-CDSS).
The proposed methodology integrates real-world Electronic Health Records (EHRs) [14],
encompassing both structured fields and unstructured clinical documentation, to ensure
comprehensive and representative clinical insight. A hybrid quantum-—classical computational
workflow is utilized to enhance data processing efficiency, model scalability, and predictive
performance. By combining rigorous clinical datasets with advanced quantum machine learning
techniques, this methodological framework establishes a robust foundation for evaluating the
feasibility, reliability, and clinical applicability of the QC-CDSS.

3.1 Participants and Sampling

The study made use of anonymized Electronic Health Records (EHRs) and clinical
documentation obtained from a consortium of partner tertiary-care hospitals, representing multiple
specialties such as internal medicine, cardiology [15], endocrinology, oncology, and emergency
medicine. To ensure that the dataset reflected the diversity of real clinical populations, a stratified
sampling approach was applied. This method balanced the distribution of patient age groups,
diagnostic categories, treatment pathways, and common comorbidities, thereby reducing sampling
bias and capturing the natural variability of clinical trajectories.

A total of 32,000 patient records were included in the dataset. Of these, 28,500 were
designated for model development, while the remaining 3,500 formed an external validation
cohort. Patients were eligible for inclusion only if their records contained complete longitudinal
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EHR information, including demographic data, vital signs, medication histories, laboratory
profiles, radiology summaries, discharge notes, and physician-authored clinical documentation.
Records were removed if they exhibited excessive missing data, lacked proper visit-episode
identifiers, or contained inconsistent coding formats—such as mixed ICD-10 and SNOMED CT
annotations—to maintain data uniformity and analytical reliability.

To further enhance methodological rigor, the sampling design incorporated temporal
diversity across a five-year period. This longitudinal span allowed the dataset to reflect changes in
clinical practice guidelines, seasonal disease trends, and evolving therapeutic protocols—all of
which can significantly influence model performance in clinical decision support applications.
Prior to analysis, all records were fully de-identified in accordance with HIPAA regulations and
regional health data protection frameworks.

3.2 Data Collection Method

Data collection was carried out through a multi-stage extraction workflow that integrated
inputs from the Hospital Information System (HIS), Laboratory Information System (LIS),
Radiology Information System (RIS), and clinical documentation repositories. Structured data—
such as laboratory values, medication prescriptions, diagnostic codes, vital signs, and progress
charts—were retrieved using standard HL7/FHIR interfaces. Unstructured clinical texts, including
physician notes, radiology impressions, nursing observations, and narrative summaries, were
extracted directly from the hospital’s clinical documentation management platform.

To ensure semantic uniformity across diverse data sources, all structured and unstructured
records were processed using a Unified Clinical Terminology Normalization Framework. This
framework mapped clinical concepts to standardized vocabularies such as SNOMED CT, ICD-10,
LOINC, and RxNorm [16]. A dedicated rule-based parser was employed to handle context-
sensitive linguistic features—including negations (e.g., “no signs of infection”), temporal
expressions (e.g., “symptoms progressing over the past 72 hours”), and medication adjustments
(e.g., “dose increased to 1000 mg”)—thus preserving critical clinical meaning that is often lost
during traditional preprocessing methods.

The dataset also incorporated real-time physiological signals from continuous monitoring
devices to better emulate real-world clinical decision-making scenarios. These streams were
temporally aligned with EHR events to generate a unified, chronologically ordered patient timeline.
Throughout the entire data acquisition process, strict adherence to ethical research standards,
institutional data-governance policies, and secure data-handling protocols ensured patient
confidentiality and data integrity.

3.3 Clarification of How Data Were Analysed

This study's analytical framework used a hybrid quantum—classical workflow to maximize
clinical predictions and pattern recognition with quantum computing. Preprocessing, model
training, and quantum-assisted optimization comprised the three main phases of the analysis
pipeline.

3.3.1 Preprocessing and Feature Engineering

Structured EHR data were standardized using a combination of min—max normalization, z-
score scaling, and robust statistical techniques for outlier detection. Missing values were addressed
through a hybrid approach that combined expectation—-maximization algorithms with clinically
informed imputation methods to ensure that reconstructed values remained medically reasonable.

Unstructured clinical narratives were processed through an advanced NLP pipeline built on
transformer-based architectures. These models performed tasks such as named entity recognition
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(NER), clinical concept extraction, and relation identification to capture meaningful semantic
relationships within the text. Following preprocessing, each patient’s information was transformed
into a longitudinal feature representation that encoded temporal patterns across diagnoses,
symptoms, treatments, and physiological indicators, enabling comprehensive temporal modeling in
downstream analyses.

3.4 Advanced Computing using Quantum Fields

Quantum bits, or qubits, form the foundation of quantum computation. Unlike classical
bits—which can only exist in one of two states (0 or 1)—qubits can occupy a superposition of
multiple states simultaneously. This unique property allows quantum computers to perform many
computations in parallel, offering significant speedups for certain classes of problems. Another
essential quantum phenomenon is entanglement, in which two or more qubits become intrinsically
linked so that the state of one qubit instantly influences the state of another, regardless of the
physical distance between them. This non-local correlation is a key contributor to the
computational power of quantum systems.

Quantum circuits operate through quantum gates, which play a role similar to logic gates in
classical computing but function according to quantum mechanical principles. These gates
manipulate qubits while preserving quantum coherence, enabling complex transformations of
guantum states. Figure 2 illustrates the placement and function of these fundamental quantum gates
within a quantum circuit.
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Figure 2. An example of machine learning methods used to identify spleen injuries in CT scans

Although classical machine learning techniques have successfully solved a wide range of
real-world problems using mature and reliable computational frameworks, many quantum
algorithms have yet to demonstrate clear, consistent advantages over these classical methods.
Current quantum hardware still faces significant limitations—individual quantum operations often
run slower than classical computations due to noise, instability, and the overhead required to

JCAIT, Vol. 1, Issue. 4, Dec 2025: 50 — 62



JCAIT a 58

maintain quantum states. Additionally, the cost, fragility, and operational complexity of quantum
devices continue to hinder large-scale adoption.
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Figure 3. Quantum computing-Enabled clinical Decision support system using EHRs

The architecture integrates heterogeneous Electronic Health Records (EHRs), clinical
documentation, and structured patient data through a multimodal preprocessing pipeline.
Unstructured text is processed using transformer-based NLP models, while structured EHR features
are encoded into quantum states using quantum data encoders in Figure 3. A hybrid quantum-
classical machine learning engine performs joint feature extraction, optimization, and clinical
prediction. Outputs from the prediction engine are interpreted, validated, and delivered to clinicians
through the CDSS interface, enabling real-time, context-aware clinical recommendations.

These constraints highlight the importance of evaluating quantum computing and classical
machine learning through a balanced and realistic perspective. Any comparison must consider the
current technological maturity of both fields as well as the future potential of quantum-enhanced
computation. Such an approach ensures that expectations remain scientifically grounded while
acknowledging the transformative possibilities that quantum technologies may offer as hardware
and algorithms continue to advance.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section presents the empirical evaluation of the proposed Quantum Computing—
Enabled Clinical Decision Support System (QC-CDSS). A series of experiments was conducted to
measure its performance gains in processing efficiency, predictive accuracy, and scalability relative
to conventional machine-learning and cloud-based CDSS architectures. The findings indicate
substantial improvements achieved through quantum feature encoding, quantum-assisted
optimization, and the hybrid classical-quantum inference workflow. These enhancements
collectively demonstrate the system’s potential to outperform traditional computational models in
handling complex, high-dimensional clinical data.
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4.1 Model Performance Evaluation

Table 1 provides a consolidated comparison of diagnostic prediction metrics—including
accuracy, precision, recall, and F1-score—across three clinical decision support models: the
Classical ML-CDSS, the Deep Learning-CDSS, and the proposed QC-CDSS.

Table 1. Diagnostic Prediction Performance Comparison

Metric Classical ML-CDSS Deep Learning CDSS Proposed QC-CDSS
Accuracy 82.4% 89.6% 95.8%
Precision 80.1% 88.4% 94.2%
Recall 78.7% 87.9% 96.5%
F1-Score 79.4% 88.1% 95.3%

The QC-CDSS demonstrated consistently superior performance compared to both classical
and deep learning models, with the most notable gains observed in recall. This improvement
reflects the quantum model’s enhanced ability to capture complex, high-dimensional relationships
within EHR data and clinical text embeddings.
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eli=Deep Learning CDSS
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Figure 4. Diagnostic prediction performance across three computational models—Classical ML-
CDSS, Deep Learning-CDSS, and QC-CDSS

The quantum-enabled framework achieves the highest recall and F1-score, demonstrating
its superior capacity for identifying clinically relevant patterns in heterogeneous EHR data and
unstructured clinical text in Figure 4.

4.2 Computational Efficiency Evaluation

Table 2. Computational Efficiency Evaluation

Method Avg. Inference Time (ms) Time Reduction (%0)
Classical ML-CDSS 780 ms —

Deep Learning CDSS 520 ms —

Proposed QC-CDSS 145 ms 72% faster
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Quantum circuits allowed simultaneous evaluation of multiple features, resulting in
substantial time savings in Table 2.

8
7
6 -
5 ® Time Reduction
4 - m Average
3 . Inference Time
2 -
1 -
0 -
Classical ML-CDSS Deep Learning CDSS

Figure 5. Comparison of key evaluation metrics (accuracy, precision, recall, and F1-score) between
traditional machine-learning models, deep learning—based CDSS, and the proposed QC-CDSS

The quantum-enhanced system consistently outperforms baseline models, with notable
gains in recall, attributed to the quantum model’s ability to capture complex, high-dimensional
correlations in clinical data in Figure 5.

4.3 Error Rate Reduction

Table 3. Clinical Error Reduction Analysis

Type of Error Deep Learning CDSS | QC-CDSS | % Reduction
Misdiagnosis 10.2% 4.8% 52.9%
Incorrect Triage 8.5% 3.9% 54.1%
Medication Suggestion | 6.3% 2.7% 57.1%

Errors

The guantum-enabled model significantly decreases clinical decision errors by improving
pattern detection in complex multimodal data in Table 3.

4.4 Scalability and Throughput

Table 4. System Throughput under Increasing Workload

Number of Records | DL-CDSS Processing | QC-CDSS Processing | Speed
Processed Time (s) Time (s) Improvement
10,000 412's 155s 62%

50,000 2,210 s 670 s 69%

100,000 4,950 s 1,260 s 74%

Quantum-based parallel feature transformation enables faster processing even as dataset

size grows in Table 4.
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5. CONCLUSION

This study introduced a Quantum Computing—Enabled Clinical Decision Support System
(QC-CDSS) aimed at improving diagnostic accuracy, reducing computational overhead, and
enhancing the reliability of clinical decision-making through the integration of Electronic Health
Records (EHRs) and clinical narratives. By leveraging quantum feature encoding, variational
quantum circuits, and a hybrid classical-quantum inference architecture, the proposed system
demonstrated significant performance advantages over traditional machine-learning and deep-
learning approaches. Experimental findings showed notable gains in precision, recall, inference
speed, and scalability, accompanied by a measurable reduction in diagnostic errors.

Furthermore, the combined use of structured EHR data and unstructured clinical text
enabled the model to capture complex, nonlinear relationships critical for early disease detection
and optimized treatment planning. These improvements underscore the emerging potential of
guantum computing in healthcare analytics, particularly as quantum hardware continues to advance
in stability, efficiency, and accessibility.

Looking ahead, future work will focus on evolving the QC-CDSS framework into a next-
generation intelligent clinical assistant capable of delivering highly accurate, personalized, and
real-time decision support across diverse medical contexts, further solidifying the role of quantum-
enabled computing in modern healthcare.
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