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The rapid expansion of Virtual Care Management Systems (VCMS) 

has created an urgent demand for intelligent, autonomous, and 

scalable Remote Patient Monitoring (RPM) solutions capable of 

processing continuous streams of physiological data. Traditional 

RPM architectures, which depend heavily on centralized cloud 

servers and rule-based analytics, often suffer from latency issues, 

limited scalability, and reduced effectiveness in providing timely 

clinical insights. To address these limitations, this study proposes an 

AI-Enhanced Remote Patient Monitoring Framework that integrates 

multimodal biomedical sensors, edge-level preprocessing, and cloud-

coordinated deep learning workflows for real-time assessment of 

patient health states. The framework incorporates advanced artificial 

intelligence components—such as transformer-driven vital-sign 

forecasting networks, robust anomaly detection models, and 

federated learning mechanisms—to deliver secure, adaptive, and low-

latency monitoring. Experimental results obtained from diverse RPM 

datasets reveal substantial improvements in event-detection accuracy, 

signal quality, and temporal prediction performance when compared 

with conventional machine learning approaches. Findings also show 

that the hybrid AI architecture reduces overall monitoring latency by 

up to 35% and increases early clinical alerting precision by 22%. 

Overall, this work provides a scalable, interoperable, and clinically 

dependable model for next-generation virtual care systems, 

supporting proactive and high-quality remote healthcare delivery. 
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1. INTRODUCTION 

AI refers to computational systems designed to replicate human cognitive abilities, 

enabling machines to perform tasks that traditionally require human intelligence—such as learning 

from data, understanding natural language, reasoning, decision-making, and interpreting sensory 

input [1]. Modern AI relies on techniques like machine learning, natural language processing, and 

computer vision to analyse complex data and continually refine its performance through 

experience. In healthcare, AI is widely applied to process large volumes of clinical information, 
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support disease diagnosis, recommend personalized treatments, and facilitate continuous patient 

monitoring through wearable technologies. 

Digital health encompasses the use of digital tools—including mobile health applications, 

wearable devices, and AI-driven analytics—to improve the quality, efficiency, and accessibility of 

healthcare services. These technologies are designed to enhance patient outcomes, streamline 

clinical workflows, and promote more personalized care delivery [2]. Remote patient care further 

extends these benefits by enabling clinicians to monitor, assess, and support patients from a 

distance using telemedicine, mobile platforms, and sensor-based wearables. This approach reduces 

the need for in-person visits, increases convenience, and is particularly valuable for individuals 

living in rural or underserved areas. 

Wearable technology includes any electronic device worn on the body to collect, transmit, 

or display real-time data. Examples include fitness trackers, smartwatches, smart glasses, and 

advanced biosensing devices such as wearable EEG systems. These devices capture a wide range 

of health-related metrics—such as physical activity, heart rate, sleep patterns, and neurological 

signals—and typically integrate with mobile applications or cloud-based platforms for further 

analysis and insights [3]. Today, wearables play an important role across healthcare, fitness, and 

everyday life, bringing together innovation and usability to improve monitoring, convenience, and 

overall well-being. 

1.1 Importance of online healthcare for remote patient care 

 

Figure 1. List of all important wearable devices in digital health for remote patient care 

Wearable devices are reshaping digital healthcare by enabling continuous, real-time patient 

monitoring and supporting personalized clinical care across various medical specialties. These 

technologies facilitate large-scale acquisition of physiological and behavioral data, allowing 

patients to actively track their health while enhancing the accuracy of clinical decision-making. The 

following section highlights the essential roles of wearable devices in inpatient care. As illustrated 

in Figure 1 [4], wearable and digital-health technologies are central to remote patient care, 

particularly in the context of remote patient monitoring (RPM). These tools are transforming 

chronic disease management by providing real-time tracking of vital signs and health conditions, 
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ultimately improving patient outcomes and reducing both direct and indirect healthcare costs 

through proactive and preventive care strategies. 

1.2 Problem Statement 

Remote Patient Monitoring (RPM) has emerged as a central element of modern Virtual 

Care Management Systems (VCMS), yet current infrastructures still face substantial challenges in 

delivering timely and high-resolution clinical insights. Most existing RPM models rely on 

centralized cloud computation and static, rule-driven analytics, which introduce latency, reduce 

system responsiveness, and limit scalability—particularly when serving large and diverse patient 

populations. Additionally, these systems often struggle with the continuous, multimodal data 

produced by heterogeneous wearable sensors, resulting in signal noise, inconsistent data quality, 

and unreliable clinical event notifications. Traditional machine-learning approaches further fall 

short due to their limited adaptability to individual physiological variations and their inability to 

fully model complex temporal patterns in continuous health data streams. Concerns around data 

privacy also persist, as transmitting raw biosignals to cloud servers heightens vulnerability to 

security breaches. Collectively, these limitations highlight the need for an advanced, AI-driven 

RPM architecture capable of performing near-patient inference, safeguarding sensitive health 

information, and enabling rapid, context-aware clinical decision support within next-generation 

virtual care ecosystems. 

1.3 Major Contributions 

This study presents a comprehensive AI-Integrated Remote Patient Monitoring Framework 

designed to overcome the inherent limitations of traditional RPM architectures. 

o The proposed system introduces a hybrid edge–cloud model in which lightweight 

preprocessing and anomaly screening is executed at the edge, while deep learning–based 

clinical inference is performed through cloud-orchestrated transformer networks and federated 

learning modules. 

o By integrating multimodal biomedical sensing with advanced AI-driven temporal prediction 

and anomaly detection mechanisms, the framework enables accurate, continuous monitoring 

across diverse physiological conditions. The use of federated learning enhances privacy by 

ensuring that sensitive patient data remains localized on-device during model updates. 

Extensive experimental evaluations on heterogeneous RPM datasets demonstrate that the 

proposed system significantly improves event-detection accuracy, enhances signal quality, and 

reduces end-to-end monitoring latency.  

o The developed architecture provides a scalable and interoperable foundation suitable for next-

generation virtual care platforms, delivering clinically reliable insights while supporting large-

scale remote healthcare deployments. 

 

2. LITERATURE REVIEW 

Remote Patient Monitoring (RPM) has undergone rapid advancement over the past decade, 

transitioning from simple telemetric systems to highly automated, AI-enabled virtual care 

infrastructures. Early RPM platforms were limited to transmitting raw physiological 

measurements—such as ECG, blood pressure, and glucose levels—from patients to clinical 

interfaces, without the ability to interpret or contextualize the data. These early systems lacked 

adaptability, real-time decision support, and intelligent processing, reducing their usefulness for 

managing high-risk chronic conditions [5]. Their reliance on basic rule-based alerts also resulted in 
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frequent false positives, primarily due to signal noise, motion artifacts, and variations in sensor 

positioning. 

The introduction of machine learning marked a shift toward automated signal 

interpretation; however, the initial models remained heavily cloud-dependent, leading to high 

latency and substantial bandwidth consumption. Traditional methods—including SVMs, Random 

Forests, and shallow CNNs—were unable to effectively model long-range physiological 

dependencies and performed poorly across diverse wearable device ecosystems. Recent 

advancements favored deeper architectures such as LSTMs, Bi-LSTMs [6], GRUs, and hybrid 1D-

CNN models, improving anomaly detection and temporal health-state prediction. Despite their 

improved performance, these models rely on centralized training pipelines that raise substantial 

privacy concerns and limit scalability for large-scale deployments. 

Edge computing has emerged as a promising solution, enabling localized preprocessing, 

artifact removal [7], and early-stage inference directly on wearable or near-device platforms. 

Studies indicate that edge-assisted processing can reduce system latency by up to 40%, 

significantly enhancing the responsiveness of virtual care environments. Simultaneously, 

transformer-based architectures have gained momentum for their superior ability to model complex 

temporal–physiological relationships through multi-head self-attention. Their capacity for 

multimodal data fusion makes them particularly effective in integrating ECG, PPG, temperature, 

accelerometer data, and contextual metadata into unified predictive models. 

Federated Learning [8] has recently been adopted to address privacy risks and device 

variability, allowing multiple devices to collaboratively train models without exchanging raw 

biomedical data. However, current FL-enabled RPM solutions still face challenges, including 

irregular client participation, non-IID physiological distributions, and limited support for real-time 

model inference. 

 

3. METHODS AND MATERIALS 

3.1 Data Gathering Technique 

The dataset for this study was derived from a diverse ecosystem of Remote Patient 

Monitoring (RPM) technologies, including wearable vital-sign trackers, intelligent biomedical skin 

patches, and mobile health applications integrated within the Virtual Care Management System 

(VCMS). These devices continuously captured multiple physiological signals—heart rate, blood 

oxygen saturation (SpO₂), respiratory rate, skin temperature, blood pressure, ECG waveforms, and 

accelerometer-based motion patterns. Raw sensor streams were securely transferred via Bluetooth 

Low Energy (BLE) or Wi-Fi to an edge gateway [9], where preliminary processing steps such as 

timestamp harmonization, noise attenuation, and signal stabilization were executed. The 

monitoring infrastructure supported both real-time streaming and retrospective batch acquisition, 

enabling synchronized collection of multimodal physiological signals across varied patient groups. 

Ground-truth clinical labels, including physician-validated events and annotated abnormal 

episodes, were sourced from electronic health records (EHRs) and integrated through a secure, 

FHIR-compatible interface. By combining continuous biomedical sensing data with contextual 

metadata and expert annotations, the study established a comprehensive [10], high-fidelity dataset 

suitable for model training, validation, and rigorous performance evaluation. 

3.2 Feature extraction 

Feature extraction was carried out using a hybrid edge–cloud workflow designed to 

balance computational load and maintain high signal fidelity. At the edge level, lightweight digital 

signal processing (DSP) methods were applied to suppress noise [11], remove physiological and 
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motion-related artifacts, and segment incoming data into clinically meaningful time windows. This 

included band-pass filtering for ECG waveforms, motion-artifact reduction for PPG signals, and 

drift compensation for temperature sensors. After preprocessing, essential statistical and temporal 

attributes—such as heart rate variability indices, RR-interval trends, SpO₂ variation patterns, and 

respiratory cycle metrics—were computed to enable rapid, on-device anomaly detection. 

In the cloud environment, deep feature extraction was performed using transformer-based 

representation learning models capable of modeling long-range temporal dependencies and 

interactions across multiple sensor modalities [12]. These models generated high-level latent 

embeddings directly from raw waveform segments, enabling the identification of subtle 

physiological irregularities that conventional manual feature engineering often overlooks. 

By combining edge-level DSP techniques with cloud-based deep feature learning, the 

pipeline preserved both fine-grained biometric details and complex temporal–clinical relationships. 

This resulted in a robust, information-rich feature space that substantially improved predictive 

performance and the accuracy of real-time event detection. 

3.3 AI is the Future of RPM 

In Remote Patient Monitoring (RPM), patients are observed from their homes using 

connected health-measurement devices [13]. These devices collect physiological readings and 

transmit the data to a cloud platform—either directly or through an intermediary such as a 

smartphone or tablet. Once the data reaches the cloud, healthcare providers can access and evaluate 

the patient’s measurements through a secure web-based dashboard. 

Wearable devices, such as smartwatches [14], offer the advantage of automatic, continuous 

monitoring. However, non-wearable devices that require patient interaction—such as digital blood 

pressure monitors, glucometers, or weighing scales—are also commonly used. Together, these 

systems enable seamless data collection and effective remote oversight.  

Figure 2 below illustrates the typical architecture of a modern remote patient monitoring 

system: 



                

JCAIT, Vol. 1, Issue. 4, Dec 2025:  63 - 74 

68 

 

Figure 2. The Architecture of a modern remote patient monitoring system 

Remote patient monitoring systems are not automatically classified as medical devices. 

According to the EU’s MEDDEV 2.1/6 guidance, platforms that simply collect, transfer, store, or 

display medical data do not fall under the category of medical devices. Similarly, the U.S. FDA 

classifies such solutions as Medical Device Data Systems (MDDS). Although MDDS are 

technically subject to regulation, the FDA applies enforcement discretion, meaning that—much 

like in the EU—they are effectively unregulated in routine practice. 

However, once additional intelligent or diagnostic functionalities are integrated the 

regulatory status changes [15]. Features such as clinical decision support algorithms, automated 

event detection, or diagnostic interpretation can elevate an RPM platform into the category of a 

regulated medical device. For instance, continuous home ECG monitoring commonly requires 

automated arrhythmia detection due to the large volume of data generated over extended 

monitoring periods. Since the algorithm performs medical interpretation, it must be evaluated and 

approved under relevant medical device regulations. 

3.4 The Challenge of Monitoring Patients Remotely 

 Building a basic remote patient monitoring (RPM) system is relatively straightforward, 

especially when dealing with low-frequency measurements such as blood pressure or body 

weight, which generate only a handful of readings per day. In fact, a small team of skilled 

university students could likely develop a functional proof-of-concept within a single summer. 

 However, the complexity increases dramatically with high-frequency physiological data, such 

as continuous ECG streams [16], which can produce orders of magnitude, more data. These 
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scenarios require more scalable system architecture capable of handling heavy data throughput 

and real-time processing. 

 Despite the technical considerations, the true challenge lies in creating an effective and 

intuitive user experience. This requires close collaboration with clinicians and patients to 

ensure the system aligns with real-world workflows. As user involvement grows, so do the 

expectations: the platform must capture more than numerical measurements—for instance, 

patient-reported symptoms, contextual notes, and communication logs. It must also support 

secure interaction channels and integrate seamlessly with existing hospital information 

systems. 

 While these additions require thoughtful design and additional effort, they remain fully 

achievable without relying on advanced or experimental technologies. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The proposed AI-powered Remote Patient Monitoring Framework was developed using 

hybrid edge–cloud architecture to facilitate scalable, real-time analysis of physiological signals. At 

the edge, a Raspberry Pi 4 gateway paired with off-the-shelf wearable sensors handled on-device 

preprocessing, noise reduction, and preliminary anomaly detection. The cloud layer operated on a 

GPU-accelerated virtual environment equipped with NVIDIA Tesla T4 units, where sophisticated 

deep learning processes—including transformer-based prediction models, federated learning for 

gradient aggregation, and multimodal signal integration—were performed. Communication 

between edge and cloud components was secured through an end-to-end encrypted MQTT protocol 

supporting TLS 1.3. The system prioritized modularity and clinical interoperability by 

incorporating HL7-FHIR adapters, enabling streamlined EHR annotation, physician event tagging, 

and seamless integration of clinical metadata across distributed monitoring platforms. 

4.1 Experimental Configuration 

The experimental evaluation utilized a heterogeneous, multimodal dataset collected from 

wearable ECG patches, PPG wristbands, continuous temperature sensors, and smartphone-

integrated accelerometers. The dataset comprised approximately 1,500 patient-hours for model 

training, with an additional 600 patient-hours reserved for testing and validation. The transformer-

based deep learning model was implemented using PyTorch 2.1 [17], while federated learning 

experiments were conducted via TensorFlow Federated (TFF) on simulated edge devices running 

isolated virtual instances. Training took place in a cloud GPU environment featuring an NVIDIA 

Tesla T4 (16 GB), 64 GB of RAM, and an 8-core Intel Xeon processor, as detailed in Tables 1, 2, 

and 3. 

At the edge, preprocessing modules were deployed on ARMv8 architectures to provide 

realistic assessment of low-power inference performance. The dataset was split into training, 

validation, and testing sets using an 80:10:10 ratios. Model hyper parameters included a batch size 

of 32, a learning rate of 0.0005, and the Adam optimizer with cosine annealing, while early 

stopping was applied to prevent over fitting. Each experiment was repeated five times, and the 

results were averaged to ensure statistical reliability. 

4.2 Measures of Performance 

To evaluate the effectiveness of the proposed framework, multiple quantitative metrics 

were applied across prediction, anomaly detection, signal quality enhancement, and system 

efficiency: 
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 Root Mean Square Error (RMSE): Assessed the accuracy of continuous vital-sign 

predictions (ECG, SpO₂, respiratory rate). 

 Mean Absolute Error (MAE): Measured absolute deviation between predicted and actual 

physiological signals. 

 F1-Score and Sensitivity: Evaluated accuracy in detecting clinical anomalies such as 

arrhythmias, hypoxia episodes, and respiratory irregularities. 

 Signal-to-Noise Ratio (SNR) Improvement: Measured signal enhancement achieved through 

edge-level preprocessing. 

 Latency (End-to-End Delay): Quantified the time taken from sensor data acquisition to final 

clinical alert generation. 

 Energy Consumption: Measured per-cycle computation cost at the edge to ensure battery-

efficient operation. 

These metrics enabled a comprehensive assessment of predictive accuracy, clinical reliability, 

computational efficiency, and real-time responsiveness. 

4.3 Findings and Discussion 

The experimental results indicate that the proposed framework substantially outperforms 

traditional machine learning approaches and cloud-only RPM systems across all evaluated metrics. 

The transformer-based model achieved an RMSE of 0.84, an MAE of 0.61, and an F1-score of 

0.93, marking a notable improvement over baseline LSTM, CNN, and Random Forest models 

(Figure 3). Additionally, the hybrid preprocessing pipeline enhanced the signal-to-noise ratio 

(SNR) by 18%, highlighting the critical role of edge-based denoising in mitigating sensor artifacts 

caused by motion, environmental disturbances, and device variability. 

Table 1. Datasets Used in Experiments 

Dataset Name Modalities Size Description Use Case 

PhysioNet MIT-

BIH 

ECG 48 subjects Arrhythmia dataset Model pretraining & 

validation 

MIMIC-III 

Waveform DB 

ECG, PPG, Resp > 10,000 

hrs 

ICU physiological 

signals 

Multimodal feature 

learning 

Custom Wearable 

Dataset 

ECG, PPG, 

Temp, ACC 

1,500 

patient-hrs 

Real-time wearable 

monitoring 

Framework 

evaluation 

 

Table 2. Devices and Sensors Used 

Device Sensor Type Parameters Sampling 

Rate 

Purpose 

ECG Patch (Zio-

like) 

1-lead ECG RR interval, QRS 

width 

250 Hz Cardiac monitoring 

PPG Wristband PPG + HR SpO₂, HRV 100 Hz Oxygen saturation 

estimation 

Temp Sensor 

(Stick-On) 

Thermistor Skin temp 1 Hz Fever detection 

Smartphone IMU Accelerometer Motion, fall 

detection 

50 Hz Activity & noise 

estimation 
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Figure 3. This figure illustrates the distribution of datasets used in the study, including ECG, PPG, 

accelerometer, and vital-sign repositories 

 

Table 3. Performance Metrics 

Metric Type Description Purpose 

RMSE Regression Measures error in continuous signal 

prediction 

Evaluate model 

precision 

MAE Regression Average absolute deviation Baseline error 

comparison 

F1-score Classification Harmonic mean of precision & 

recall 

Anomaly detection 

SNR Improvement Signal 

Quality 

Noise reduction effectiveness Edge preprocessing 

Latency System End-to-end delay Real-time suitability 

Energy 

Consumption 

Efficiency Power usage at edge Battery sustainability 
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Figure 4. Sensor Capability Mapping Across RPM Devices 

Latency analysis showed that the hybrid edge–cloud architecture reduced end-to-end 

monitoring delays by 35%, largely due to localized feature extraction and early anomaly filtering at 

the edge gateway (Figure 4) [18]. Federated learning experiments further demonstrated a 22% 

improvement in anomaly detection precision while maintaining privacy, as raw physiological 

signals remained on-device throughout all training iterations. 

Qualitative examination of the prediction curves confirmed that the AI-driven system more 

accurately tracked rapid physiological changes, including sudden SpO₂ drops and transient 

tachycardia events, compared to conventional models, which often produced delayed or overly 

smoothed responses. Collectively, these results underscore the framework’s clinical readiness and 

its potential for continuous, high-fidelity monitoring in next-generation virtual care environments. 

 

5. CONCLUSION 

This study introduces a robust and scalable AI-Integrated Remote Patient Monitoring 

Framework designed for next-generation Virtual Care Management Systems. By combining 

multimodal sensing, edge-level preprocessing, and cloud-based deep learning with federated 

learning capabilities, the framework addresses critical challenges in remote patient care, including 

high latency, limited scalability, and insufficient clinical adaptability. The system demonstrates 

superior performance in vital-sign prediction, anomaly detection, and signal quality enhancement 

while maintaining privacy-preserving data management. Experimental results highlight notable 

improvements in accuracy, responsiveness, and clinical alerting precision compared to 

conventional RPM architectures, establishing a foundation for future-ready, intelligent virtual care 

ecosystems capable of supporting large-scale, real-time, and autonomous patient monitoring. 

Future research will focus on advancing the framework toward more clinically 

interpretable and intelligent monitoring solutions. Key directions include the integration of 

explainable AI (XAI) modules to improve transparency, allowing clinicians to visualize model 

decisions and understand the physiological drivers behind automated alerts. Large-scale real-world 

deployments will be conducted to assess system robustness, reliability, and patient adherence under 

naturalistic conditions. The incorporation of emerging biosensing technologies—such as 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 40 60 80

F1-Score

MAE

RMSE



JCAIT    

AI-Integrated Remote Patient Monitoring Framework for Next-Generation Virtual Care Management 

Systems  

73 

continuous glucose monitors, passive hydration sensors, and non-invasive blood pressure devices—

will expand the diversity of multimodal signals. Additionally, future models will explore 

knowledge graph–based clinical reasoning for context-aware recommendations and personalized 

interventions. Finally, the integration of advanced edge AI accelerators and low-power neural 

processing units (NPUs) will enable ultra-low-latency inference, paving the way for fully 

autonomous smart-home healthcare ecosystems. 
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